Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Colloid Interface Sci ; 662: 149-159, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38340514

ABSTRACT

Efficient and stable oxygen reduction reaction (ORR) catalysts are essential for constructing reliable energy conversion and storage devices. Herein, we prepared noble metal-free FeCoNiMnV high-entropy alloy supported on nitrogen-doped carbon nanotubes (FeCoNiMnV HEA/N-CNTs) by a one-step pyrolysis at 800 °C, as certificated by a set of characterizations. The graphitization degree of the N-CHTs was optimized by tuning the pyrolysis temperature in the control groups. The resultant catalyst greatly enhanced the ORR characteristics in the alkaline media, showing the positive onset potential (Eonset) of 0.99 V and half-wave potential (E1/2) of 0.85 V. More importantly, the above FeCoNiMnV HEA/N-CNTs assembled Zn-air battery exhibited a greater open-circuit voltage (1.482 V), larger power density (185.12 mW cm-2), and outstanding cycle stability (1698 cycles, 566 h). This study provides some valuable insights on developing sustainable ORR catalysts in Zn-air batteries.

2.
J Colloid Interface Sci ; 647: 1-11, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37236099

ABSTRACT

Design of efficient and durable oxygen reduction reaction (ORR) electrocatalysts still remains challenge in sustainable energy storage and conversion devices. To achieve sustainable development, it is of importance to prepare high-quality carbon-derived ORR catalysts from biomass. Herein, Fe5C2 nanoparticles (NPs) were facilely entrapped in Mn, N, S-codoped carbon nanotubes (Fe5C2/Mn, N, S-CNTs) by a one-step pyrolysis of the mixed lignin, metal precursors and dicyandiamide. The resulting Fe5C2/Mn, N, S-CNTs had open and tubular structures, which exhibited positive shifts in the onset potential (Eonset = 1.04 V) and high half-wave potential (E1/2 = 0.85 V), showing excellent ORR characteristics. Further, the typical catalyst-assembled Zn-air battery showed a high power density (153.19 mW cm-2) and good cycling performance as well as obvious cost advantage. The research provides some valuable insights for rational construction of low-cost and environmentally sustainable ORR catalysts in clean energy field, coupled by offering some valuable insights for reusing biomass wastes.

3.
Nanotechnology ; 32(30)2021 May 05.
Article in English | MEDLINE | ID: mdl-33848992

ABSTRACT

Sulfuryl fluoride (SO2F2) is one of the ideal decomposition components of sulfur hexafluoride (SF6), which is widely used as an insulating and arc extinguishing medium in gas-insulated switchgear. To detect the decomposition component of SF6at room temperature, the use of SO2F2is still a challenge. In this work, we have successfully fabricated TiO2nanofibers and nickel sulfate (NiSO4NPs) via simple electrospun and hydrothermal methods, followed by calcination process to improve the sensing performance. Metal oxide semiconductor materials (MOSs) are widely used in gas sensing applications due to their superior performance and fast recovery speed. Although the performance of our TiO2/NiSO4composite nanofiber sensor decreases at higher temperatures, it shows an excellent response to target gasses at room temperature. Ni-decoration on the outer surface of the nanofibers could maximize the sensing response of 100 ppm SO2F2by up to 189% at room temperature, showing that the TiO2/NiSO4composite nanofibers are 2.5 times superior to the pure TiO2nanofiber sensors. Thus, the approach for this novel composite nanofiber-based material is promising for the fabrication of superior gas sensors for decomposition of SF6.

4.
Sci Rep ; 8(1): 1705, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374251

ABSTRACT

A novel hierarchical heterostructures based on α-Fe2O3/NiO nanosheet-covered fibers were synthesized using a simple two-step process named the electrospinning and hydrothermal techniques. A high density of α-Fe2O3 nanosheets were uniformly and epitaxially deposited on a NiO nanofibers. The crystallinity, morphological structure and surface composition of nanostructured based on α-Fe2O3/NiO composites were investigated by XRD, SEM, TEM, EDX, XPS and BET analysis. The extremely branched α-Fe2O3/NiO nanosheet-covered fibers delivered an extremely porous atmosphere with huge specific surface area essential for superior gas sensors. Different nanostructured based on α-Fe2O3/NiO composites were also explored by adjusting the volume ratio of the precursors. The as-prepared samples based on α-Fe2O3/NiO nanocomposite sensors display apparently enhanced sensing characteristics, including higher sensing response, quick response with recovery speed and better selectivity towards acetone gas at lower operating temperature as compared to bare NiO nanofibers. The sensing response of S-2 based α-Fe2O3/NiO nanosheet-covered fibers were 18.24 to 100 ppm acetone gas at 169 °C, which was about 6.9 times higher than that of bare NiO nanofibers. The upgraded gas sensing performance of composites based on α-Fe2O3/NiO nanosheet-covered fibers might be ascribed to the exclusive morphologies with large surface area, p-n heterojunctions and the synergetic performance of α-Fe2O3 and NiO.

SELECTION OF CITATIONS
SEARCH DETAIL