Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Methods Mol Biol ; 2654: 91-111, 2023.
Article in English | MEDLINE | ID: mdl-37106177

ABSTRACT

Affinity maturation of B cell clones within germinal centers constitutes an important mechanism for immune memory. During this process, B cell receptor signaling capacity is tested in multiple rounds of positive selection. Antigen stimulation and co-stimulatory signals mobilize calcium to switch on gene expression leading to proliferation and survival and to differentiation into memory B cells and plasma cells. Additionally, all these processes require adaption of B cell metabolism, and calcium signaling and metabolic pathways are closely interlinked. Mitochondrial adaption, ROS production, and NADPH oxidase activation are involved in cell fate decisions, but it remains elusive to what extent, especially because the analysis of these dynamic processes in germinal centers has to take place in vivo. Here, we introduce a quantitative intravital imaging method for combined measurement of cytoplasmic calcium concentration and enzymatic fingerprinting in germinal center B cells as a possible tool in order to further examine the relationship of calcium signaling and immunometabolism.


Subject(s)
Calcium , NAD , NAD/metabolism , Calcium/metabolism , Fluorescence Resonance Energy Transfer , Germinal Center , Receptors, Antigen, B-Cell/metabolism
3.
Nat Commun ; 13(1): 2460, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513371

ABSTRACT

Infection or vaccination leads to the development of germinal centers (GC) where B cells evolve high affinity antigen receptors, eventually producing antibody-forming plasma cells or memory B cells. Here we follow the migratory pathways of B cells emerging from germinal centers (BEM) and find that many BEM cells migrate into the lymph node subcapsular sinus (SCS) guided by sphingosine-1-phosphate (S1P). From the SCS, BEM cells may exit the lymph node to enter distant tissues, while some BEM cells interact with and take up antigen from SCS macrophages, followed by CCL21-guided return towards the GC. Disruption of local CCL21 gradients inhibits the recycling of BEM cells and results in less efficient adaption to antigenic variation. Our findings thus suggest that the recycling of antigen variant-specific BEM cells and transport of antigen back to GC may support affinity maturation to antigenic drift.


Subject(s)
Antigenic Drift and Shift , Memory B Cells , B-Lymphocytes , Germinal Center , Lymph Nodes
4.
Cell Rep ; 37(4): 109878, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34706240

ABSTRACT

Blood endothelial cells display remarkable plasticity depending on the demands of a malignant microenvironment. While studies in solid tumors focus on their role in metabolic adaptations, formation of high endothelial venules (HEVs) in lymph nodes extends their role to the organization of immune cell interactions. As a response to lymphoma growth, blood vessel density increases; however, the fate of HEVs remains elusive. Here, we report that lymphoma causes severe HEV regression in mouse models that phenocopies aggressive human B cell lymphomas. HEV dedifferentiation occurrs as a consequence of a disrupted lymph-carrying conduit system. Mechanosensitive fibroblastic reticular cells then deregulate CCL21 migration paths, followed by deterioration of dendritic cell proximity to HEVs. Loss of this crosstalk deprives HEVs of lymphotoxin-ß-receptor (LTßR) signaling, which is indispensable for their differentiation and lymphocyte transmigration. Collectively, this study reveals a remodeling cascade of the lymph node microenvironment that is detrimental for immune cell trafficking in lymphoma.


Subject(s)
Cell Movement , Endothelial Cells/metabolism , Lymphocytes/metabolism , Lymphoma, B-Cell/metabolism , Animals , Endothelial Cells/pathology , Humans , Jurkat Cells , Lymphocytes/pathology , Lymphoma, B-Cell/pathology , Mice , Mice, Transgenic , Venules
5.
Nat Immunol ; 22(10): 1231-1244, 2021 10.
Article in English | MEDLINE | ID: mdl-34556887

ABSTRACT

The generation of lymphoid tissues during embryogenesis relies on group 3 innate lymphoid cells (ILC3) displaying lymphoid tissue inducer (LTi) activity and expressing the master transcription factor RORγt. Accordingly, RORγt-deficient mice lack ILC3 and lymphoid structures, including lymph nodes (LN). Whereas T-bet affects differentiation and functions of ILC3 postnatally, the role of T-bet in regulating fetal ILC3 and LN formation remains completely unknown. Using multiple mouse models and single-cell analyses of fetal ILCs and ILC progenitors (ILCP), here we identify a key role for T-bet during embryogenesis and show that its deficiency rescues LN formation in RORγt-deficient mice. Mechanistically, T-bet deletion skews the differentiation fate of fetal ILCs and promotes the accumulation of PLZFhi ILCP expressing central LTi molecules in a RORα-dependent fashion. Our data unveil an unexpected role for T-bet and RORα during embryonic ILC function and highlight that RORγt is crucial in counteracting the suppressive effects of T-bet.


Subject(s)
Cell Differentiation/immunology , Immunity, Innate/immunology , Lymph Nodes/immunology , Lymphocytes/immunology , Nuclear Receptor Subfamily 1, Group F, Member 1/immunology , T-Box Domain Proteins/immunology , Animals , Cell Lineage/immunology , Female , Lymphoid Tissue/immunology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , T-Lymphocytes, Helper-Inducer/immunology
6.
Nat Commun ; 12(1): 3796, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145278

ABSTRACT

The cell biology of circadian clocks is still in its infancy. Here, we describe an efficient strategy for generating knock-in reporter cell lines using CRISPR technology that is particularly useful for genes expressed transiently or at low levels, such as those coding for circadian clock proteins. We generated single and double knock-in cells with endogenously expressed PER2 and CRY1 fused to fluorescent proteins allowing us to simultaneously monitor the dynamics of CRY1 and PER2 proteins in live single cells. Both proteins are highly rhythmic in the nucleus of human cells with PER2 showing a much higher amplitude than CRY1. Surprisingly, CRY1 protein is nuclear at all circadian times indicating the absence of circadian gating of nuclear import. Furthermore, in the nucleus of individual cells CRY1 abundance rhythms are phase-delayed (~5 hours), and CRY1 levels are much higher (>5 times) compared to PER2 questioning the current model of the circadian oscillator.


Subject(s)
CLOCK Proteins/metabolism , Circadian Clocks/physiology , Cryptochromes/metabolism , Period Circadian Proteins/metabolism , Single-Cell Analysis/methods , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Circadian Rhythm/physiology , Cryptochromes/genetics , Gene Knock-In Techniques/methods , Genes, Reporter/genetics , HCT116 Cells , Humans , Period Circadian Proteins/genetics
7.
Methods Mol Biol ; 2308: 163-176, 2021.
Article in English | MEDLINE | ID: mdl-34057723

ABSTRACT

Decade-long survival of plasma cells in the bone marrow has long been a puzzling matter. To understand how plasma cells are maintained and supported by survival-niches to account for lifelong antibody production demands new intravital imaging techniques that are able to follow up a single cell and their interaction with other cell types in situ. We achieved to successfully establish longitudinal imaging of the bone marrow (LIMB) that is based on an implantable endoscopic device. In this chapter, basic approaches on how to investigate plasma cell-stroma interaction and surgical implantation procedures are introduced.


Subject(s)
Bone Marrow Cells/physiology , Bone Marrow/physiology , Cellular Microenvironment , Image Processing, Computer-Assisted , Intravital Microscopy , Microscopy, Fluorescence, Multiphoton , Plasma Cells/physiology , Adoptive Transfer , Animals , Bone Marrow/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Cell Separation , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice, Transgenic , Plasma Cells/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism
8.
Elife ; 102021 03 22.
Article in English | MEDLINE | ID: mdl-33749591

ABSTRACT

Calcium is a universal second messenger present in all eukaryotic cells. The mobilization and storage of Ca2+ ions drives a number of signaling-related processes, stress-responses, or metabolic changes, all of which are relevant for the development of immune cells and their adaption to pathogens. Here, we introduce the Förster resonance energy transfer (FRET)-reporter mouse YellowCaB expressing the genetically encoded calcium indicator TN-XXL in B lymphocytes. Calcium-induced conformation change of TN-XXL results in FRET-donor quenching measurable by two-photon fluorescence lifetime imaging. For the first time, using our novel numerical analysis, we extract absolute cytoplasmic calcium concentrations in activated B cells during affinity maturation in vivo. We show that calcium in activated B cells is highly dynamic and that activation introduces a persistent calcium heterogeneity to the lineage. A characterization of absolute calcium concentrations present at any time within the cytosol is therefore of great value for the understanding of long-lived beneficial immune responses and detrimental autoimmunity.


Subject(s)
B-Lymphocytes/metabolism , Fluorescence Resonance Energy Transfer/methods , Lymphocyte Activation , Animals , Female , Male , Mice
9.
Front Mol Biosci ; 7: 62, 2020.
Article in English | MEDLINE | ID: mdl-32426367

ABSTRACT

The multiple sclerosis therapeutic teriflunomide is known to block the de novo synthesis of pyrimidine in mitochondria by inhibiting the enzyme dihydroorotate-dehydrogenase (DHODH). The metabolic processes of oxidative phosphorylation and glycolysis are further possible downstream targets. In healthy adult mice, high levels of dihydroorotate-dehydrogenase (DHODH) activity are measured in the central nervous system (CNS), and DHODH inhibition may cause indirect effects on reactive oxygen species production and NADPH oxidase (NOX) mediated oxidative stress, known to be key aspects of the inflammatory response of the CNS. However, little is known about the effect of teriflunomide on the dynamics of NOX activation in CNS cells and subsequent alterations of neuronal function in vivo. In this study, we employed fluorescence lifetime imaging (FLIM) and phasor analysis of the endogeneous fluorescence of NAD(P)H (nicotinamide adenine dinucleotide phosphate) in the brain stem of mice to visualize the effect of teriflunomide on cellular metabolism. Furthermore, we simultaneously studied neuronal Ca2+ signals in transgenic mice with a FRET-based Troponin C Ca2+ sensor based (CerTN L15) quantified using FRET-FLIM. Hence, we directly correlated neuronal (dys-)function indicated by steadily elevated calcium levels with metabolic activity in neurons and surrounding CNS tissue. Employing our intravital co-registered imaging approach, we could not detect any significant alteration of NOX activation after incubation of the tissue with teriflunomide. Furthermore, we could not detect any changes of the inflammatory induced neuronal dysfunction due to local treatment with teriflunomide. Concerning drug safety, we can confirm that teriflunomide has no metabolic effects on neuronal function in the CNS tissue during neuroinflammation at concentrations expected in orally treated patients. The combined endogenous FLIM and calcium imaging approach developed by us and employed here uniquely meets the need to monitor cellular metabolism as a basic mechanism of tissue functions in vivo.

10.
Acta Neuropathol Commun ; 5(1): 88, 2017 Nov 25.
Article in English | MEDLINE | ID: mdl-29178933

ABSTRACT

Although oligoclonal bands in the cerebrospinal fluid have been a hallmark of multiple sclerosis diagnosis for over three decades, the role of antibody-secreting cells in multiple sclerosis remains unclear. T and B cells are critical for multiple sclerosis pathogenesis, but increasing evidence suggests that plasma cells also contribute, through secretion of autoantibodies. Long-lived plasma cells are known to drive various chronic inflammatory conditions as e.g. systemic lupus erythematosus, however, to what extent they are present in autoimmune central nervous system inflammation has not yet been investigated. In brain biopsies from multiple sclerosis patients and other neurological diseases, we could detect non-proliferating plasma cells (CD138+Ki67-) in the parenchyma. Based on this finding, we hypothesized that long-lived plasma cells can persist in the central nervous system (CNS). In order to test this hypothesis, we adapted the multiple sclerosis mouse model experimental autoimmune encephalomyelitis to generate a B cell memory response. Plasma cells were found in the meninges and the parenchyma of the inflamed spinal cord, surrounded by tissue areas resembling survival niches for these cells, characterized by an up-regulation of chemokines (CXCL12), adhesion molecules (VCAM-1) and survival factors (APRIL and BAFF). In order to determine the lifetime of plasma cells in the chronically inflamed CNS, we labeled the DNA of proliferating cells with 5-ethynyl-2'-deoxyuridine (EdU). Up to five weeks later, we could detect EdU+ long-lived plasma cells in the murine CNS. To our knowledge, this is the first study describing non-proliferating plasma cells directly in the target tissue of a chronic inflammation in humans, as well as the first evidence demonstrating the ability of plasma cells to persist in the CNS, and the ability of the chronically inflamed CNS tissue to promote this persistence. Hence, our results suggest that the CNS provides survival niches for long-lived plasma cells, similar to the niches found in other organs. Targeting these cells in the CNS offers new perspectives for treatment of chronic autoimmune neuroinflammatory diseases, especially in patients who do not respond to conventional therapies.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/pathology , Multiple Sclerosis/pathology , Parenchymal Tissue/pathology , Plasma Cells/pathology , Adult , Aged , Animals , Antigens, CD/metabolism , Calcium-Binding Proteins , Chemokine CXCL12/metabolism , DNA-Binding Proteins/metabolism , Disease Models, Animal , Female , Flow Cytometry , Glial Fibrillary Acidic Protein/metabolism , Humans , Ki-67 Antigen/metabolism , Male , Mice , Microfilament Proteins , Middle Aged , Vascular Cell Adhesion Molecule-1/metabolism , Young Adult
11.
Sci Rep ; 7(1): 7101, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28769068

ABSTRACT

Simultaneous detection of multiple cellular and molecular players in their native environment, one of the keys to a full understanding of immune processes, remains challenging for in vivo microscopy. Here, we present a synergistic strategy for spectrally multiplexed in vivo imaging composed of (i) triple two-photon excitation using spatiotemporal synchronization of two femtosecond lasers, (ii) a broad set of fluorophores with emission ranging from blue to near infrared, (iii) an effective spectral unmixing algorithm. Using our approach, we simultaneously excite and detect seven fluorophores expressed in distinct cellular and tissue compartments, plus second harmonics generation from collagen fibers in lymph nodes. This enables us to visualize the dynamic interplay of all the central cellular players during germinal center reactions. While current in vivo imaging typically enables recording the dynamics of 4 tissue components at a time, our strategy allows a more comprehensive analysis of cellular dynamics involving 8 single-labeled compartments. It enables to investigate the orchestration of multiple cellular subsets determining tissue function, thus, opening the way for a mechanistic understanding of complex pathophysiologic processes in vivo. In the future, the design of transgenic mice combining a larger spectrum of fluorescent proteins will reveal the full potential of our method.


Subject(s)
Microscopy, Fluorescence, Multiphoton , Algorithms , Animals , Cell Line , Germinal Center/cytology , Germinal Center/metabolism , Humans , Image Processing, Computer-Assisted , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton/instrumentation , Microscopy, Fluorescence, Multiphoton/methods , Spleen/cytology , Spleen/metabolism
12.
Methods Mol Biol ; 1623: 37-50, 2017.
Article in English | MEDLINE | ID: mdl-28589345

ABSTRACT

Due to the multitude of cell types involved in the differentiation of plasma cells during the germinal center reaction, and due to a lack of in vitro systems, which recapitulate germinal centers, the most suitable way to study plasma cell generation in germinal centers is in vivo. In this chapter we describe how to induce humoral immune responses to defined model antigens and how to visualize and track plasma cells and their interactions with other cells in the lymph nodes of living mice.


Subject(s)
Cell Differentiation , Cell Tracking , Microscopy , Plasma Cells/cytology , Plasma Cells/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/transplantation , Cell Tracking/methods , Fluorescent Antibody Technique , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Image Processing, Computer-Assisted , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Mice , Mice, Transgenic , Microscopy/methods , Plasma Cells/metabolism , Time Factors
13.
Int J Mol Sci ; 16(5): 11713-27, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26006244

ABSTRACT

The development of intravital Förster Resonance Energy Transfer (FRET) is required to probe cellular and tissue function in the natural context: the living organism. Only in this way can biomedicine truly comprehend pathogenesis and develop effective therapeutic strategies. Here we demonstrate and discuss the advantages and pitfalls of two strategies to quantify FRET in vivo-ratiometrically and time-resolved by fluorescence lifetime imaging-and show their concrete application in the context of neuroinflammation in adult mice.


Subject(s)
Brain Stem/pathology , Calcium/analysis , Encephalomyelitis, Autoimmune, Experimental/pathology , Fluorescence Resonance Energy Transfer/methods , Intravital Microscopy/methods , Optical Imaging/methods , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...