Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Soft Matter ; 15(47): 9776-9787, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31742293

ABSTRACT

Tissues are defined not only by their biochemical composition, but also by their distinct mechanical properties. It is now widely accepted that cells sense their mechanical environment and respond to it. However, studying the effects of mechanics in in vitro 3D environments is challenging since current 3D hydrogel assays convolve mechanics with gel porosity and adhesion. Here, we present novel colloidal crystals as modular 3D scaffolds where these parameters are principally decoupled by using monodisperse, protein-coated PAAm microgel beads as building blocks, so that variable stiffness regions can be achieved within one 3D colloidal crystal. Characterization of the colloidal crystal and oxygen diffusion simulations suggested the suitability of the scaffold to support cell survival and growth. This was confirmed by live-cell imaging and fibroblast culture over a period of four days. Moreover, we demonstrate unambiguous durotactic fibroblast migration and mechanosensitive neurite outgrowth of dorsal root ganglion neurons in 3D. This modular approach of assembling 3D scaffolds from mechanically and biochemically well-defined building blocks allows the spatial patterning of stiffness decoupled from porosity and adhesion sites in principle and provides a platform to investigate mechanosensitivity in 3D environments approximating tissues in vitro.


Subject(s)
Cell Culture Techniques , Fibroblasts/physiology , Microgels , Neurons/physiology , Animals , Cell Movement , Colloids , Ganglia, Spinal/cytology , Hydrogels , Mechanotransduction, Cellular , Mice , Mice, Inbred C57BL , NIH 3T3 Cells
2.
BMC Bioinformatics ; 20(1): 465, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31500563

ABSTRACT

BACKGROUND: Atomic force microscopy (AFM) allows the mechanical characterization of single cells and live tissue by quantifying force-distance (FD) data in nano-indentation experiments. One of the main problems when dealing with biological tissue is the fact that the measured FD curves can be disturbed. These disturbances are caused, for instance, by passive cell movement, adhesive forces between the AFM probe and the cell, or insufficient attachment of the tissue to the supporting cover slide. In practice, the resulting artifacts are easily spotted by an experimenter who then manually sorts out curves before proceeding with data evaluation. However, this manual sorting step becomes increasingly cumbersome for studies that involve numerous measurements or for quantitative imaging based on FD maps. RESULTS: We introduce the Python package nanite, which automates all basic aspects of FD data analysis, including data import, tip-sample separation, base line correction, contact point retrieval, and model fitting. In addition, nanite enables the automation of the sorting step using supervised learning. This learning approach relates subjective ratings to predefined features extracted from FD curves. For ratings ranging from 0 to 10, our approach achieves a mean squared error below 1.0 rating points and a classification accuracy between good and poor curves that is above 87%. We showcase our approach by quantifying Young's moduli of the zebrafish spinal cord at different classification thresholds and by introducing data quality as a new dimension for quantitative AFM image analysis. CONCLUSION: The addition of quality-based sorting using supervised learning enables a fully automated and reproducible FD data analysis pipeline for biological samples in AFM.


Subject(s)
Data Accuracy , Machine Learning , Microscopy, Atomic Force , Software , Animals , Automation , Nanotechnology , Zebrafish
3.
Exp Eye Res ; 181: 38-48, 2019 04.
Article in English | MEDLINE | ID: mdl-30641045

ABSTRACT

Mammalian retinal glial (Müller) cells are known to guide light through the inner retina to photoreceptors (Franze et al., 2007; Proc Natl Acad Sci U S A 104:8287-8292). It was shown that Müller cells transmit predominantly red-green and less violet-blue light (Labin et al., 2014; Nat Commun 5:4319). It is not known whether this optical function is reflected in the cone-to-Müller cell ratio. To determine this ratio in the retinas of mammals with different lifestyle, we evaluated the local densities of cones and Müller cells in the retinas of guinea pigs, rabbits, sheep, red deer, roe deer, domestic pigs, and wild boars. Retinal wholemounts were labeled with peanut agglutinin to mark cones and anti-vimentin antibodies to identify Müller cells. Wholemounts of guinea pig and rabbit retinas were also labeled with anti-S-opsin-antibodies. With the exceptions of guinea pig and pig retinas that had cone-to-Müller cell ratios of above one, the local densities of cones and Müller cells in the retinas of the species investigated were roughly equal. Because the proportion of S-cones is usually low (for example, 5.3% of all cones in the dorsal guinea pig retina expressed S-opsin), it is suggested that Müller cells are mainly coupled to M-cones. Exceptions are the ventral peripheries of guinea pig and rabbit retinas which are specialized areas with high S-cone densities. Here, up to 50% of Müller cells may be coupled to S-cones, and 40% of S-cones may be not coupled to Müller cells. Among the species investigated, the density of Müller cells in the central retina was inversely correlated with the axial length of the eyes. It is suggested that (with the exception of specialized S-cone areas) Müller cells support high acuity vision by predominant guidance of red-green light to M-opsin expressing cones.


Subject(s)
Ependymoglial Cells/cytology , Mammals/anatomy & histology , Retina/cytology , Retinal Cone Photoreceptor Cells/cytology , Animals , Cell Count , Life Style
4.
Exp Eye Res ; 173: 91-108, 2018 08.
Article in English | MEDLINE | ID: mdl-29763583

ABSTRACT

In this study, we show the capability of Müller glial cells to transport light through the inverted retina of reptiles, specifically the retina of the spectacled caimans. Thus, confirming that Müller cells of lower vertebrates also improve retinal light transmission. Confocal imaging of freshly isolated retinal wholemounts, that preserved the refractive index landscape of the tissue, indicated that the retina of the spectacled caiman is adapted for vision under dim light conditions. For light transmission experiments, we used a setup with two axially aligned objectives imaging the retina from both sides to project the light onto the inner (vitreal) surface and to detect the transmitted light behind the retina at the receptor layer. Simultaneously, a confocal microscope obtained images of the Müller cells embedded within the vital tissue. Projections of light onto several representative Müller cell trunks within the inner plexiform layer, i.e. (i) trunks with a straight orientation, (ii) trunks which are formed by the inner processes and (iii) trunks which get split into inner processes, were associated with increases in the intensity of the transmitted light. Projections of light onto the periphery of the Müller cell endfeet resulted in a lower intensity of transmitted light. In this way, retinal glial (Müller) cells support dim light vision by improving the signal-to-noise ratio which increases the sensitivity to light. The field of illuminated photoreceptors mainly include rods reflecting the rod dominance of the of tissue. A subpopulation of Müller cells with downstreaming cone cells led to a high-intensity illumination of the cones, while the surrounding rods were illuminated by light of lower intensity. Therefore, Müller cells that lie in front of cones may adapt the intensity of the transmitted light to the different sensitivities of cones and rods, presumably allowing a simultaneous vision with both receptor types under dim light conditions.


Subject(s)
Alligators and Crocodiles/physiology , Ependymoglial Cells/physiology , Light , Night Vision/physiology , Retina/physiology , Vision, Ocular/physiology , Animals , Eye Proteins/metabolism , Female , Male , Microscopy, Confocal , Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/physiology
5.
J Biophotonics ; 11(3)2018 03.
Article in English | MEDLINE | ID: mdl-28800386

ABSTRACT

Cells alter the path of light, a fact that leads to well-known aberrations in single cell or tissue imaging. Optical diffraction tomography (ODT) measures the biophysical property that causes these aberrations, the refractive index (RI). ODT is complementary to fluorescence imaging and does not require any markers. The present study introduces RI and fluorescence tomography with optofluidic rotation (RAFTOR) of suspended cells, facilitating the segmentation of the 3D-correlated RI and fluorescence data for a quantitative interpretation of the nuclear RI. The technique is validated with cell phantoms and used to confirm a lower nuclear RI for HL60 cells. Furthermore, the nuclear inversion of adult mouse photoreceptor cells is observed in the RI distribution. The applications shown confirm predictions of previous studies and illustrate the potential of RAFTOR to improve our understanding of cells and tissues.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Optical Imaging/instrumentation , Refractometry , Single-Cell Analysis , Tomography/instrumentation , Animals , HL-60 Cells , Humans , Mice , Phantoms, Imaging , Retina/diagnostic imaging
6.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28724733

ABSTRACT

Bilaterians usually possess a central nervous system, composed of neurons and supportive cells called glial cells. Whereas neuronal cells are highly comparable in all these animals, glial cells apparently differ, and in deuterostomes, radial glial cells are found. These particular secretory glial cells may represent the archetype of all (macro) glial cells and have not been reported from protostomes so far. This has caused controversial discussions of whether glial cells represent a homologous bilaterian characteristic or whether they (and thus, centralized nervous systems) evolved convergently in the two main clades of bilaterians. By using histology, transmission electron microscopy, immunolabelling and whole-mount in situ hybridization, we show here that protostomes also possess radial glia-like cells, which are very likely to be homologous to those of deuterostomes. Moreover, our antibody staining indicates that the secretory character of radial glial cells is maintained throughout their various evolutionary adaptations. This implies an early evolution of radial glial cells in the last common ancestor of Protostomia and Deuterostomia. Furthermore, it suggests that an intraepidermal nervous system-composed of sensory cells, neurons and radial glial cells-was probably the plesiomorphic condition in the bilaterian ancestor.


Subject(s)
Biological Evolution , Central Nervous System/cytology , Ependymoglial Cells/cytology , Neuroglia/cytology , Animals , Neurons
7.
Glia ; 65(1): 62-74, 2017 01.
Article in English | MEDLINE | ID: mdl-27706854

ABSTRACT

Tractional forces or mechanical stimulation are known to induce calcium responses in retinal glial cells. The aim of the study was to determine the characteristics of calcium responses in Müller glial cells of the avascular guinea pig retina induced by focal mechanical stimulation. Freshly isolated retinal wholemounts were loaded with Mitotracker Deep Red (to fill Müller cells) and the calcium-sensitive dye Fluo-4/AM. The inner retinal surface was mechanically stimulated with a micropipette tip for 10 ms. Stimulation induced two different cytosolic calcium responses in Müller cells with different kinetics in dependence on the distance from the stimulation site. Müller cells near the stimulation site displayed an immediate and long-lasting calcium response with high amplitude. This response was mediated by calcium influx from the extracellular space likely triggered by activation of ATP-insensitive P2 receptors. More distant Müller cells displayed, with a delay of 2.4 s, transient calcium responses which propagated laterally in a wave-like fashion. Propagating calcium waves were induced by a calcium-independent release of ATP from Müller cells near the stimulation site, and were mediated by a release of calcium from internal stores triggered by ATP, acting in part at P2Y1 receptors. The data suggest that mechanically stimulated Müller cells of the guinea pig retina release ATP which induces a propagating calcium wave in surrounding Müller cells. Propagating calcium waves may be implicated in the spatial regulation of the neuronal activity and homeostatic glial functions, and may transmit gliosis-inducing signals across the retina. Mechanical stimulation of guinea pig Müller cells induces two calcium responses: an immediate response around the stimulation site and propagating calcium waves. Both responses are differentially mediated by activation of purinergic receptors. GLIA 2016 GLIA 2017;65:62-74.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Neuroglia/metabolism , Retina/cytology , Retina/metabolism , Adenosine Triphosphate/metabolism , Animals , Gliosis/metabolism , Guinea Pigs , Mice , Receptors, Purinergic/metabolism
8.
Elife ; 52016 Mar 22.
Article in English | MEDLINE | ID: mdl-27003292

ABSTRACT

Cells can enter into a dormant state when faced with unfavorable conditions. However, how cells enter into and recover from this state is still poorly understood. Here, we study dormancy in different eukaryotic organisms and find it to be associated with a significant decrease in the mobility of organelles and foreign tracer particles. We show that this reduced mobility is caused by an influx of protons and a marked acidification of the cytoplasm, which leads to widespread macromolecular assembly of proteins and triggers a transition of the cytoplasm to a solid-like state with increased mechanical stability. We further demonstrate that this transition is required for cellular survival under conditions of starvation. Our findings have broad implications for understanding alternative physiological states, such as quiescence and dormancy, and create a new view of the cytoplasm as an adaptable fluid that can reversibly transition into a protective solid-like state.


Subject(s)
Cytoplasm/chemistry , Cytoplasm/drug effects , Dictyostelium/physiology , Phase Transition/drug effects , Saccharomyces cerevisiae/physiology , Cell Survival , Hydrogen-Ion Concentration , Stress, Physiological
9.
Biophys J ; 109(10): 2023-36, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26588562

ABSTRACT

Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible.


Subject(s)
Cell Separation/methods , Cell Shape , Microfluidics/methods , Cell Line, Tumor , Elasticity , Humans , Models, Theoretical , Stress, Mechanical
10.
Front Cell Neurosci ; 9: 363, 2015.
Article in English | MEDLINE | ID: mdl-26441534

ABSTRACT

Microglial cells are key players in the primary immune response of the central nervous system. They are highly active and motile cells that chemically and mechanically interact with their environment. While the impact of chemical signaling on microglia function has been studied in much detail, the current understanding of mechanical signaling is very limited. When cultured on compliant substrates, primary microglial cells adapted their spread area, morphology, and actin cytoskeleton to the stiffness of their environment. Traction force microscopy revealed that forces exerted by microglia increase with substrate stiffness until reaching a plateau at a shear modulus of ~5 kPa. When cultured on substrates incorporating stiffness gradients, microglia preferentially migrated toward stiffer regions, a process termed durotaxis. Lipopolysaccharide-induced immune-activation of microglia led to changes in traction forces, increased migration velocities and an amplification of durotaxis. We finally developed a mathematical model connecting traction forces with the durotactic behavior of migrating microglial cells. Our results demonstrate that microglia are susceptible to mechanical signals, which could be important during central nervous system development and pathologies. Stiffness gradients in tissue surrounding neural implants such as electrodes, for example, could mechanically attract microglial cells, thus facilitating foreign body reactions detrimental to electrode functioning.

11.
PLoS One ; 9(5): e97155, 2014.
Article in English | MEDLINE | ID: mdl-24831221

ABSTRACT

BACKGROUND: Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown. METHODS: We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus), endowed with both diurnal and nocturnal vision, by (i) immunohistochemistry, (ii) whole-cell voltage-clamp, and (iii) fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications. RESULTS: Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100ß, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling. CONCLUSION: Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K+ buffering.


Subject(s)
Ependymoglial Cells/cytology , Photoreceptor Cells, Vertebrate/cytology , Potassium Channels, Inwardly Rectifying/metabolism , Retina/physiology , Alligators and Crocodiles/metabolism , Animals , Fluorescent Dyes/chemistry , Glutamates/metabolism , Ion Channel Gating , Membrane Potentials , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Potassium/chemistry , Potassium Channels, Tandem Pore Domain/metabolism , Protein Structure, Tertiary , Retina/metabolism , Signal Transduction
12.
J Neurochem ; 126(3): 372-81, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23682811

ABSTRACT

Regulation of cellular volume is of great importance to avoid changes in neuronal excitability resulting from a decrease in the extracellular space volume. We compared the volume regulation of retinal glial (Müller) and neuronal (bipolar) cells under hypoosmotic and glutamate-stimulated conditions. Freshly isolated slices of the rat retina were superfused with a hypoosmotic solution (60% osmolarity; 4 min) or with a glutamate (1 mM)-containing isoosmotic solution (15 min), and the size changes of Müller and bipolar cell somata were recorded. Bipolar cell somata, but not Müller cell somata, swelled under hypoosmotic conditions and in the presence of glutamate. The hypoosmotic swelling of bipolar cell somata might be mediated by sodium flux into the cells, because it was not observed under extracellular sodium-free conditions, and was induced by activation of metabotropic glutamate receptors and sodium-dependent glutamate transporters. The glutamate-induced swelling of bipolar cell somata was mediated by sodium chloride flux into the cells induced by activation of NMDA- and non-NMDA glutamate receptors, glutamate transporters, and voltage-gated sodium channels. The glutamate-induced swelling of bipolar cell somata was abrogated by adenosine and γ-aminobutyric acid, but not by vascular endothelial growth factor and ATP. The data may suggest that Müller cells, in contrast to bipolar cells, possess endogenous mechanisms which tightly regulate the cellular volume in response to hypoosmolarity and prolonged glutamate exposure. Inhibitory retinal transmission may regulate the volume of bipolar cells, likely by inhibition of the excitatory action of glutamate.


Subject(s)
Cell Size/drug effects , Glutamic Acid/pharmacology , Neuroglia/metabolism , Retinal Bipolar Cells/metabolism , Animals , Glutamic Acid/metabolism , Immunohistochemistry , Neuroglia/cytology , Organ Culture Techniques , Osmotic Pressure , Rats , Rats, Long-Evans , Retinal Bipolar Cells/cytology
13.
Acta Ophthalmol ; 91(1): e48-55, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22937815

ABSTRACT

PURPOSE: Vitrectomy is a frequently performed surgical intervention in ophthalmology to remove vitreous traction and opacities or to treat complicated retinal detachments and diabetic changes. However, there is lack of information about cellular responses in retinal tissue after a surgical intervention such as vitrectomy. Microglia cells, the immune competent cells of neuronal tissue, are involved in nearly all neuropathological changes and are additionally activated by neurosurgical interventions. For most neurodegenerative changes, it is described that microglia activation is generally accompanied by a reactive gliosis of macroglial cells. However, it is not known whether microglial cell activation is necessarily associated with macroglial cell gliosis or whether these processes are regulated separately. Furthermore, there is an ongoing debate about possible detrimental consequences of microglial cell activation for neurons in central neural and retinal tissue. METHODS: Using immunohistochemistry and whole-cell patch clamp experiments in a rabbit model of partial pars plana vitrectomy, we investigated micro- and macroglial cell reactivity after this intervention. RESULTS: Partial vitrectomy induced a massive microglia response characterized by morphological changes, intraretinal migration and proliferation of retinal microglial cells, respectively. Microglial cell reactivity was observed 2 days after the operation and was down-regulated after 7 days. Microglia reactivity was associated with neither a general Müller cell gliosis nor an obvious neuronal cell loss. Electrophysiological examinations revealed no significant changes of whole-cell currents and membrane potentials of Müller cells from healthy and vitrectomized eyes up to 3 weeks after operation. Only a small number of individual Müller glial cells expressed GFAP or reduced their inward currents as a sign of Müller cell gliosis. CONCLUSION: Vitrectomy induced a massive response of microglial cells. However, microglia activation and deactivation are effectively regulated and are not necessarily associated with macroglial (Müller) cell reactivity and with obvious detrimental effects to neurons.


Subject(s)
Gliosis/pathology , Microglia/pathology , Neuroglia/pathology , Retinal Neurons/pathology , Vitrectomy , Animals , Cell Proliferation , Electrophysiology , Fluorescent Antibody Technique, Indirect , Glial Fibrillary Acidic Protein/metabolism , Gliosis/metabolism , Ki-67 Antigen/metabolism , Membrane Potentials/physiology , Microglia/metabolism , Neuroglia/metabolism , Patch-Clamp Techniques , Rabbits , Retinal Neurons/metabolism
14.
Science ; 336(6089): 1700-3, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22745429

ABSTRACT

Despite their diversity, vertebrate retinae are specialized to maximize either photon catch or visual acuity. Here, we describe a functional type that is optimized for neither purpose. In the retina of the elephantnose fish (Gnathonemus petersii), cone photoreceptors are grouped together within reflecting, photonic crystal-lined cups acting as macroreceptors, but rod photoreceptors are positioned behind these reflectors. This unusual arrangement matches rod and cone sensitivity for detecting color-mixed stimuli, whereas the photoreceptor grouping renders the fish insensitive to spatial noise; together, this enables more reliable flight reactions in the fish's dim and turbid habitat as compared with fish lacking this retinal specialization.


Subject(s)
Fishes/physiology , Retina/physiology , Vision, Ocular , Animals , Fishes/anatomy & histology , Goldfish , Light , Photoreceptor Cells, Vertebrate/physiology , Photoreceptor Cells, Vertebrate/ultrastructure , Predatory Behavior , Retina/anatomy & histology , Retina/ultrastructure
15.
Curr Eye Res ; 37(6): 524-31, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22577771

ABSTRACT

PURPOSE/AIM: To determine the transcriptional regulation of retinal aquaporins (AQPs) in rat models of transient and permanent retinal ischemia, and to prove the effects of chemical hypoxia, oxidative stress, glucose, and osmotic alterations on the expression of AQP9 in cultured human retinal pigment epithelium (RPE) cells. MATERIALS AND METHODS: Transient retinal ischemia-reperfusion in rats was induced by elevation of the intraocular pressure for 1 hour. Permanent retinal ischemia was induced by argon laser-induced retinal vein occlusion. The mRNA levels were determined one day after ischemia. RESULTS: Transient and permanent ischemia of the rat retina resulted in downregulation of AQPs 1, 3, 4, 5, 6, 8, and 11 in the RPE and/or neural retina. Pressure-induced transient retinal ischemia-induced upregulation of AQP9 in the neuroretina and RPE, and of AQ12 in the neuroretina. Retinal vein occlusion induced upregulation of AQP0 in the neuroretina and RPE, and of AQP9 and AQP12 in the neuroretina. In cultured human RPE cells, transcriptional expression of AQP9 was stimulated by chemical hypoxia, oxidative stress, VEGF, and high glucose. CONCLUSIONS: The data may suggest that the expression of retinal AQP9 is regulated by metabolic and oxidative stress. Upregulation of AQP9 in RPE cells may prevent lactic acidosis and subretinal edema under ischemic and oxidative stress conditions.


Subject(s)
Aquaporins/genetics , Disease Models, Animal , Gene Expression Regulation/physiology , Ischemia/genetics , Retinal Pigment Epithelium/metabolism , Retinal Vessels/metabolism , Animals , Aquaporins/metabolism , Cells, Cultured , Female , Glucose/pharmacology , Intraocular Pressure , Ischemia/etiology , Male , Ocular Hypertension/complications , Oxidative Stress , Rats , Rats, Long-Evans , Real-Time Polymerase Chain Reaction , Retinal Pigment Epithelium/drug effects , Retinal Vein Occlusion/complications , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor A/pharmacology
16.
Mol Biol Rep ; 39(8): 7949-56, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22535323

ABSTRACT

The expression of aquaporin (AQP) water channels may influence the development of retinal edema. We investigated the transcriptional regulation of AQP3 in cultured human retinal pigment epithelial (RPE) cells. As shown by RT-PCR and immunocytochemistry, cultured RPE cells express AQP3 mRNA and protein. The AQP3 mRNA level in RPE cells was elevated under the following conditions: chemical hypoxia induced by CoCl(2), hyperosmolarity induced by 100 mM NaCl, and upon stimulation of the cultures with PDGF, arachidonic acid, prostaglandin E(2), and blood serum, respectively. Chemical hypoxia increased AQP3 gene expression through MEK/ERK and JNK activation. The hyperosmolarity-, PDGF-, and serum-induced upregulation of AQP3 was prevented by inhibition of the phospholipase A(2), but not by inhibition of the cyclooxygenase. Triamcinolone acetonide prevented the upregulation of AQP3 induced by arachidonic acid and prostaglandin E(2), but not by the other factors tested. It is concluded that AQP3 is transcriptionally activated in RPE cells by various pathogenic factors involved in the development of retinal edema in situ. Activation of phospholipase A(2) is a critical factor which induces AQP3 in RPE cells.


Subject(s)
Aquaporin 3/genetics , Epithelial Cells/metabolism , Gene Expression Regulation , Retinal Pigment Epithelium/metabolism , Transcription, Genetic , Aquaporin 3/metabolism , Cell Hypoxia/genetics , Cells, Cultured , Humans , Oxidative Stress , Phospholipases A2/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism
17.
Mol Vis ; 17: 2738-50, 2011.
Article in English | MEDLINE | ID: mdl-22065927

ABSTRACT

PURPOSE: To determine whether the human Müller cell line Moorfields/Institute of Ophthalmology-Müller 1 (MIO-M1) expresses opsins. METHODS: The gene expression of opsins was determined by reverse-transcription PCR (RT-PCR). The presence of opsin proteins was determined by western blotting and immunocytochemistry. The light sensitivity of the cells was examined with imaging experiments using the calcium-sensitive dye Fluo-4. RESULTS: MIO-M1 cells express glial (glutamine synthase [GLUL], vimentin [VIM], glial fibrillary acidic protein [GFAP], cellular retinaldehyde-binding protein [RLBP1], glial high-affinity glutamate transporter [SLCA1], aquaporin-4 [AQP4], inwardly rectifying potassium channel Kir4.1 [Kir4.1]), neuronal (Thy-1 cell surface antigen [THY1], heavy neurofilament polypeptide [NEFH], microtubule-associated protein 2 [MAP2], neurogenic differentiation 1 [NEUROD1], neuronal nuclei [NEUN]), and neural progenitor markers (Nestin [NES], paired-type homeobox transcription factor [PAX6], neurogenic locus notch homolog 1 [NOTCH1]). The cells contain mRNA for the following opsins: blue opsin (OPN1SW), rhodopsin (OPN2), panopsin (OPN3), melanopsin (OPN4), neuropsin (OPN5), and peropsin (RRH), as well as for the transducins (guanine nucleotide binding protein [GNAZ], alpha transducing activity polypeptide 1 [GNAT1], alpha transducing activity polypeptide 2 [GNAT2]). The presence of blue opsin and melanopsin was confirmed with immunocytochemistry and western blotting. The immunoreactivity and mRNA of red-green opsin were found in some but not all cultures, while the immunoreactivity for rhodopsin was absent in all cultures investigated. Repetitive stimulation with 480 nm light evoked slow and fast transient calcium responses in the majority of cells investigated, while irradiation with 600 nm light was ineffective. CONCLUSIONS: The human Müller cell line MIO-M1 expresses opsins. This suggests immortalized Müller cells could be used as a cellular source to produce human opsins for their potential application as therapeutic agents in patients with retinitis pigmentosa.


Subject(s)
Cell Line , Gene Expression/radiation effects , Opsins/biosynthesis , Retina/metabolism , Retinitis Pigmentosa/metabolism , Aniline Compounds/analysis , Blotting, Western , Calcium/metabolism , Humans , Immunohistochemistry , Light , Opsins/genetics , Opsins/pharmacology , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , Retina/pathology , Retina/radiation effects , Retinitis Pigmentosa/drug therapy , Retinitis Pigmentosa/pathology , Xanthenes/analysis
18.
Curr Eye Res ; 36(9): 850-6, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21851171

ABSTRACT

PURPOSE/AIM: The development of retinal edema is the main reason of impaired vision in non-proliferative diabetic retinopathy. Water transport through aquaporins (AQPs) has been suggested to facilitate the development of ischemic edema in the retina. Here, we investigated whether experimental diabetic retinopathy in rats results in alterations of the AQP expression in the neural retina and retinal pigment epithelium (RPE). MATERIALS AND METHODS: Experimental diabetes in rats was induced by a single intravenous injection of streptozotocin (65 mg/kg body weight). The gene expression of AQPs in tissues from control and diabetic rats was examined by real-time RT-PCR. Retinal cryosections were immunostained against AQP5, 6, and 9. RESULTS: The total RNAs extracted from the neural retina and RPE contained gene transcripts for AQP0, 1, 3, 4, 5, 6, 8, 9, 11, and 12. Experimental diabetes was associated with an upregulation of AQP1 in the neural retina, and of AQP5, 9, 11, and 12 in the RPE. Furthermore, diabetes was associated with a downregulation of AQP6 and AQP11 in the neural retina, and of AQP0 in the RPE. AQP5 and AQP9 immunolabelings of the RPE were increased, and AQP6 labeling of the outer plexiform layer was decreased in retinal slices from diabetic rats in comparison to slices from control rats. CONCLUSIONS: The data suggest that experimental diabetic retinopathy is associated with a complex pattern of alteration in the retinal AQP expression. These alterations might be involved in the adaptation of retinal cells to hyperglycemic conditions and the development and/or resolution of retinal edema.


Subject(s)
Aquaporins/genetics , Diabetes Mellitus, Experimental/genetics , Diabetic Retinopathy/genetics , Gene Expression Regulation , RNA/genetics , Retina/metabolism , Animals , Aquaporin 5/biosynthesis , Aquaporin 5/genetics , Aquaporin 6/biosynthesis , Aquaporin 6/genetics , Aquaporins/biosynthesis , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Immunohistochemistry , Rats , Rats, Long-Evans , Real-Time Polymerase Chain Reaction , Retina/pathology
19.
FASEB J ; 25(2): 624-31, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20974670

ABSTRACT

Increased stiffness of reactive glial cells may impede neurite growth and contribute to the poor regenerative capabilities of the mammalian central nervous system. We induced reactive gliosis in rodent retina by ischemia-reperfusion and assessed intermediate filament (IF) expression and the viscoelastic properties of dissociated single glial cells in wild-type mice, mice lacking glial fibrillary acidic protein and vimentin (GFAP(-/-)Vim(-/-)) in which glial cells are consequently devoid of IFs, and normal Long-Evans rats. In response to ischemia-reperfusion, glial cells stiffened significantly in wild-type mice and rats but were unchanged in GFAP(-/-)Vim(-/-) mice. Cell stiffness (elastic modulus) correlated with the density of IFs. These results support the hypothesis that rigid glial scars impair nerve regeneration and that IFs are important determinants of cellular viscoelasticity in reactive glia. Thus, therapeutic suppression of IF up-regulation in reactive glial cells may facilitate neuroregeneration.


Subject(s)
Gene Expression Regulation/physiology , Intermediate Filaments/metabolism , Neuroglia/cytology , Neuroglia/physiology , Animals , Biomechanical Phenomena , Glial Fibrillary Acidic Protein , Gliosis/metabolism , Gliosis/pathology , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Rats , Rats, Long-Evans , Reperfusion Injury , Vimentin/genetics , Vimentin/metabolism
20.
Biophys J ; 101(11): 2611-9, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-22261048

ABSTRACT

In vertebrate eyes, images are projected onto an inverted retina where light passes all retinal layers on its way to the photoreceptor cells. Light scattering within this tissue should impair vision. We show that radial glial (Müller) cells in the living retina minimize intraretinal light scatter and conserve the diameter of a beam that hits a single Müller cell endfoot. Thus, light arrives at individual photoreceptors with high intensity. This leads to an optimized signal/noise ratio, which increases visual sensitivity and contrast. Moreover, we show that the ratio between Müller cells and cones-responsible for acute vision-is roughly 1. This suggests that high spatiotemporal resolution may be achieved by each cone receiving its part of the image via its individual Müller cell-light guide.


Subject(s)
Light Signal Transduction/radiation effects , Neuroglia/cytology , Neuroglia/radiation effects , Retina/cytology , Retina/radiation effects , Animals , Guinea Pigs , Imaging, Three-Dimensional , Immunohistochemistry , In Vitro Techniques , Neuroglia/metabolism , Retina/metabolism , Retinal Cone Photoreceptor Cells/cytology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/radiation effects , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...