Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Diabetes ; 72(11): 1641-1651, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37625134

ABSTRACT

Extracellular (e)ATP, a potent proinflammatory molecule, is released by dying/damaged cells at the site of inflammation and is degraded by the membrane ectonucleotidases CD39 and CD73. In this study, we sought to unveil the role of eATP degradation in autoimmune diabetes. We then assessed the effect of soluble CD39 (sCD39) administration in prevention and reversal studies in NOD mice as well as in mechanistic studies. Our data showed that eATP levels were increased in hyperglycemic NOD mice compared with prediabetic NOD mice. CD39 and CD73 were found expressed by both α- and ß-cells and by different subsets of T cells. Importantly, prediabetic NOD mice displayed increased frequencies of CD3+CD73+CD39+ cells within their pancreata, pancreatic lymph nodes, and spleens. The administration of sCD39 into prediabetic NOD mice reduced their eATP levels, abrogated the proliferation of CD4+- and CD8+-autoreactive T cells, and increased the frequency of regulatory T cells, while delaying the onset of T1D. Notably, concomitant administration of sCD39 and anti-CD3 showed a strong synergism in restoring normoglycemia in newly hyperglycemic NOD mice compared with monotherapy with anti-CD3 or with sCD39. The eATP/CD39 pathway plays an important role in the onset of T1D, and its targeting might represent a potential therapeutic strategy in T1D.

2.
Pathogens ; 9(5)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429180

ABSTRACT

Mosquitoes can transmit many infectious diseases, such as malaria, dengue, Zika, yellow fever, and lymphatic filariasis. Current mosquito control strategies are failing to reduce the severity of outbreaks that still cause high human morbidity and mortality worldwide. Great expectations have been placed on genetic control methods. Among other methods, genetic modification of the bacteria colonizing different mosquito species and expressing anti-pathogen molecules may represent an innovative tool to combat mosquito-borne diseases. Nevertheless, this emerging approach, known as paratransgenesis, requires a detailed understanding of the mosquito microbiota and an accurate characterization of selected bacteria candidates. The acetic acid bacteria Asaia is a promising candidate for paratransgenic approaches. We have previously reported that Asaia symbionts play a beneficial role in the normal development of Anopheles mosquito larvae, but no study has yet investigated the role(s) of Asaia in adult mosquito biology. Here we report evidence on how treatment with a highly specific anti-Asaia monoclonal antibody impacts the survival and physiology of adult Anopheles stephensi mosquitoes. Our findings offer useful insight on the role of Asaia in several physiological systems of adult mosquitoes, where the influence differs between males and females.

4.
Diabetologia ; 62(7): 1237-1250, 2019 07.
Article in English | MEDLINE | ID: mdl-31087105

ABSTRACT

AIMS/HYPOTHESIS: Autoimmune attack against the insulin-producing beta cells in the pancreatic islets results in type 1 diabetes. However, despite considerable research, details of the type 1 diabetes immunopathology in situ are not fully understood mainly because of difficult access to the pancreatic islets in vivo. METHODS: Here, we used direct non-invasive confocal imaging of islets transplanted in the anterior chamber of the eye (ACE) to investigate the anti-islet autoimmunity in NOD mice before, during and after diabetes onset. ACE-transplanted islets allowed longitudinal studies of the autoimmune attack against islets and revealed the infiltration kinetics and in situ motility dynamics of fluorescence-labelled autoreactive T cells during diabetes development. Ex vivo immunostaining was also used to compare immune cell infiltrations into islet grafts in the eye and kidney as well as in pancreatic islets of the same diabetic NOD mice. RESULTS: We found similar immune infiltration in native pancreatic and ACE-transplanted islets, which established the ACE-transplanted islets as reliable reporters of the autoimmune response. Longitudinal studies in ACE-transplanted islets identified in vivo hallmarks of islet inflammation that concurred with early immune infiltration of the islets and preceded their collapse and hyperglycaemia onset. A model incorporating data on ACE-transplanted islet degranulation and swelling allowed early prediction of the autoimmune attack in the pancreas and prompted treatments to intercept type 1 diabetes. CONCLUSIONS/INTERPRETATION: The current findings highlight the value of ACE-transplanted islets in studying early type 1 diabetes pathogenesis in vivo and underscore the need for timely intervention to halt disease progression.


Subject(s)
Diabetes Mellitus, Type 1/diagnostic imaging , Animals , Autoimmunity/physiology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/surgery , Graft Survival/physiology , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/surgery , Islets of Langerhans Transplantation , Mice , Mice, Inbred NOD
5.
Diabetes ; 65(5): 1350-61, 2016 05.
Article in English | MEDLINE | ID: mdl-26916086

ABSTRACT

Transplantation of pancreatic islets is a therapeutic option to preserve or restore ß-cell function. Our study was aimed at developing a clinically applicable protocol for extrahepatic transplantation of pancreatic islets. The potency of islets implanted onto the omentum, using an in situ-generated adherent, resorbable plasma-thrombin biologic scaffold, was evaluated in diabetic rat and nonhuman primate (NHP) models. Intraomental islet engraftment in the biologic scaffold was confirmed by achievement of improved metabolic function and preservation of islet cytoarchitecture, with reconstitution of rich intrainsular vascular networks in both species. Long-term nonfasting normoglycemia and adequate glucose clearance (tolerance tests) were achieved in both intrahepatic and intraomental sites in rats. Intraomental graft recipients displayed lower levels of serum biomarkers of islet distress (e.g., acute serum insulin) and inflammation (e.g., leptin and α2-macroglobulin). Importantly, low-purity (30:70% endocrine:exocrine) syngeneic rat islet preparations displayed function equivalent to that of pure (>95% endocrine) preparations after intraomental biologic scaffold implantation. Moreover, the biologic scaffold sustained allogeneic islet engraftment in immunosuppressed recipients. Collectively, our feasibility/efficacy data, along with the simplicity of the procedure and the safety of the biologic scaffold components, represented sufficient preclinical testing to proceed to a pilot phase I/II clinical trial.


Subject(s)
Biocompatible Materials , Diabetes Mellitus, Experimental/surgery , Hyperglycemia/prevention & control , Islets of Langerhans Transplantation/methods , Pancreas, Artificial , Tissue Scaffolds , Animals , Biocompatible Materials/adverse effects , Biocompatible Materials/chemistry , Biomarkers/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/pathology , Feasibility Studies , Female , Immunosuppression Therapy/adverse effects , Islets of Langerhans/cytology , Islets of Langerhans/ultrastructure , Islets of Langerhans Transplantation/adverse effects , Islets of Langerhans Transplantation/immunology , Islets of Langerhans Transplantation/pathology , Macaca fascicularis , Male , Microscopy, Electron, Scanning , Omentum , Pancreas, Artificial/adverse effects , Plasma/chemistry , Plasma/metabolism , Rats, Inbred Lew , Rats, Inbred WF , Recombinant Proteins/adverse effects , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Surface Properties , Thrombin/adverse effects , Thrombin/chemistry , Thrombin/metabolism , Tissue Engineering , Tissue Scaffolds/adverse effects , Tissue Scaffolds/chemistry , Transplantation, Heterologous/adverse effects , Transplantation, Heterotopic/adverse effects , Transplantation, Isogeneic/adverse effects
6.
Parasit Vectors ; 8: 278, 2015 May 17.
Article in English | MEDLINE | ID: mdl-25981386

ABSTRACT

BACKGROUND: Wolbachia is a group of intracellular maternally inherited bacteria infecting a high number of arthropod species. Their presence in different mosquito species has been largely described, but Aedes aegypti, the main vector of Dengue virus, has never been found naturally infected by Wolbachia. Similarly, malaria vectors and other anophelines are normally negative to Wolbachia, with the exception of an African population where these bacteria have recently been detected. Asaia is an acetic acid bacterium stably associated with several mosquito species, found as a dominant microorganism of the mosquito microbiota. Asaia has been described in gut, salivary glands and in reproductive organs of adult mosquitoes in Ae. aegypti and in anophelines. It has recently been shown that Asaia may impede vertical transmission of Wolbachia in Anopheles mosquitoes. Here we present an experimental study, aimed at determining whether there is a negative interference between Asaia and Wolbachia, for the gonad niche in mosquitoes. METHODS: Different methods (PCR and qPCR, monoclonal antibody staining and FISH) have been used to address the question of the co-localization and the relative presence/abundance of the two symbionts. PCR and qPCR were performed to qualitatively and quantitatively verify the distribution of Asaia and Wolbachia in different mosquito species/organs. Monoclonal antibody staining and FISH were performed to localize the symbionts in different mosquito species. RESULTS: Here we provide evidence that, in Anopheles and in other mosquitoes, there is a reciprocal negative interference between Asaia and Wolbachia symbionts, in terms of the colonization of the gonads. In particular, we have shown that in some mosquito species the presence of one of the symbionts prevented the establishment of the second, while in other systems the symbionts were co-localized, although at reduced densities. CONCLUSIONS: A mutual exclusion or a competition between Asaia and Wolbachia may contribute to explain the inability of Wolbachia to colonize the female reproductive organs of anophelines, inhibiting its vertical transmission and explaining the absence of Wolbachia infection in Ae. aegypti and in the majority of natural populations of Anopheles mosquitoes.


Subject(s)
Aedes/microbiology , Alphaproteobacteria/isolation & purification , Anopheles/microbiology , Gonads/microbiology , Wolbachia/isolation & purification , Animals , Female , Gastrointestinal Tract/microbiology , Male
7.
Nucleic Acids Res ; 42(21): 13039-50, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25389261

ABSTRACT

The virF gene of Shigella, responsible for triggering the virulence cascade in this pathogenic bacterium, is transcriptionally repressed by the nucleoid-associated protein H-NS. The primary binding sites of H-NS within the promoter region of virF have been detected here by footprinting experiments in the presence of H-NS or its monomeric DNA-binding domain (H-NSctd), which displays the same specificity as intact H-NS. Of the 14 short DNA fragments identified, 10 overlap sequences similar to the H-NS binding motif. The 'fast', 'intermediate' and 'slow' H-NS binding events leading to the formation of the nucleoprotein complex responsible for transcription repression have been determined by time-resolved hydroxyl radical footprinting experiments in the presence of full-length H-NS. We demonstrate that this process is completed in ≤1 s and H-NS protections occur simultaneously on site I and site II of the virF promoter. Furthermore, all 'fast' protections have been identified in regions containing predicted H-NS binding motifs, in agreement with the hypothesis that H-NS nucleoprotein complex assembles from a few nucleation sites containing high-affinity binding sequences. Finally, data are presented showing that the 22-bp fragment corresponding to one of the HNS binding sites deviates from canonical B-DNA structure at three TpA steps.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins/metabolism , Promoter Regions, Genetic , Repressor Proteins/metabolism , Shigella flexneri/genetics , Virulence Factors/genetics , Bacterial Proteins/metabolism , Binding Sites , DNA Footprinting , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Shigella flexneri/pathogenicity
8.
PLoS One ; 9(5): e95988, 2014.
Article in English | MEDLINE | ID: mdl-24788884

ABSTRACT

The yeast Wickerhamomyces anomalus has been investigated for several years for its wide biotechnological potential, especially for applications in the food industry. Specifically, the antimicrobial activity of this yeast, associated with the production of Killer Toxins (KTs), has attracted a great deal of attention. The strains of W. anomalus able to produce KTs, called "killer" yeasts, have been shown to be highly competitive in the environment. Different W. anomalus strains have been isolated from diverse habitats and recently even from insects. In the malaria mosquito vector Anopheles stephensi these yeasts have been detected in the midgut and gonads. Here we show that the strain of W. anomalus isolated from An. stephensi, namely WaF17.12, is a killer yeast able to produce a KT in a cell-free medium (in vitro) as well as in the mosquito body (in vivo). We showed a constant production of WaF17.12-KT over time, after stimulation of toxin secretion in yeast cultures and reintroduction of the activated cells into the mosquito through the diet. Furthermore, the antimicrobial activity of WaF17.12-KT has been demonstrated in vitro against sensitive microbes, showing that strain WaF17.12 releases a functional toxin. The mosquito-associated yeast WaF17.12 thus possesses an antimicrobial activity, which makes this yeast worthy of further investigations, in view of its potential as an agent for the symbiotic control of malaria.


Subject(s)
Anopheles/microbiology , Insect Vectors/microbiology , Saccharomycetales/isolation & purification , Animals , Female , Fungal Proteins/genetics , Fungal Proteins/metabolism , Malaria/transmission , Mycotoxins/metabolism , Saccharomycetales/metabolism
9.
Pathog Glob Health ; 106(7): 380-5, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23265608

ABSTRACT

It is well accepted that the symbiotic relationships insects have established with several microorganisms have had a key role in their evolutionary success. Bacterial symbiosis is also prevalent in insects that are efficient disease vectors, and numerous studies have sought to decrypt the basic mechanisms of the host-symbiont relationships and develop ways to control vector borne diseases. 'Symbiotic control', a new multifaceted approach that uses symbiotic microorganisms to control insect pests or reduce vector competence, seems particularly promising. Three such approaches currently at the cutting edge are: (1) the disruption of microbial symbionts required by insect pests; (2) the manipulation of symbionts that can express anti-pathogen molecules within the host; and (3) the introduction of endogenous microbes that affect life-span and vector capacity of the new hosts in insect populations. This work reviews current knowledge on microbial symbiosis in mosquitoes that holds promise for development of symbiotic control for mosquito borne diseases.


Subject(s)
Bacteria/drug effects , Bacteria/growth & development , Bacterial Physiological Phenomena , Culicidae/microbiology , Culicidae/physiology , Mosquito Control/methods , Symbiosis , Animals , Humans
10.
BMC Microbiol ; 12 Suppl 1: S2, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22375964

ABSTRACT

BACKGROUND: In recent years, acetic acid bacteria have been shown to be frequently associated with insects, but knowledge on their biological role in the arthropod host is limited. The discovery that acetic acid bacteria of the genus Asaia are a main component of the microbiota of Anopheles stephensi makes this mosquito a useful model for studies on this novel group of symbionts. Here we present experimental results that provide a first evidence for a beneficial role of Asaia in An. stephensi. RESULTS: Larvae of An. stephensi at different stages were treated with rifampicin, an antibiotic effective on wild-type Asaia spp., and the effects on the larval development were evaluated. Larvae treated with the antibiotic showed a delay in the development and an asynchrony in the appearance of later instars. In larvae treated with rifampicin, but supplemented with a rifampicin-resistant mutant strain of Asaia, larval development was comparable to that of control larvae not exposed to the antibiotic. Analysis of the bacterial diversity of the three mosquito populations confirmed that the level of Asaia was strongly decreased in the antibiotic-treated larvae, since the symbiont was not detectable by PCR-DGGE (denaturing gradient gel electrophoresis), while Asaia was consistently found in insects supplemented with rifampicin plus the antibiotic-resistant mutant in the diet, and in those not exposed to the antibiotic. CONCLUSIONS: The results here reported indicate that Asaia symbionts play a beneficial role in the normal development of An. stephensi larvae.


Subject(s)
Anopheles/growth & development , Anti-Bacterial Agents/pharmacology , Rifampin/pharmacology , Acetobacteraceae/drug effects , Animals , Anopheles/drug effects , Anopheles/microbiology , Drug Resistance, Bacterial , Larva/drug effects , Symbiosis/drug effects
11.
Antonie Van Leeuwenhoek ; 99(1): 43-50, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21113816

ABSTRACT

The genetic manipulation of the microbial community associated with hematophagus insects is particularly relevant for public health applications. Within mosquito populations, this relationship has been overlooked until recently. New advances in molecular biotechnology propose the genetic manipulation of mosquito symbionts to prevent the transmission of pathogens to humans by interfering with the obligatory life cycle stages within the insect through the use of effector molecules. This approach, defined as 'paratransgenesis', has opened the way for the investigation and characterization of microbes residing in the mosquito body, particularly those localised within the gut. Some interesting bacteria have been identified as candidates for genetic modification, however, endosymbiotic yeasts remain largely unexplored with little information on the symbiotic relationships to date. Here we review the recent report of symbiotic relationship between Wickerhamomyces anomalus (Pichia anomala) and several mosquito vector species as promising methods to implement control of mosquito-borne diseases.


Subject(s)
Culicidae/microbiology , Mosquito Control/methods , Saccharomycetales/physiology , Symbiosis , Animals , Saccharomycetales/isolation & purification
12.
Microb Ecol ; 60(3): 644-54, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20571792

ABSTRACT

The symbiotic relationship between Asaia, an α-proteobacterium belonging to the family Acetobacteriaceae, and mosquitoes has been studied mainly in the Asian malaria vector Anopheles stephensi. Thus, we have investigated the nature of the association between Asaia and the major Afro-tropical malaria vector Anopheles gambiae. We have isolated Asaia from different wild and laboratory reared colonies of A. gambiae, and it was detected by PCR in all the developmental stages of the mosquito and in all the specimens analyzed. Additionally, we have shown that it localizes in the midgut, salivary glands and reproductive organs. Using recombinant strains of Asaia expressing fluorescent proteins, we have demonstrated the ability of the bacterium to colonize A. gambiae mosquitoes with a pattern similar to that described for A. stephensi. Finally, fluorescent in situ hybridization on the reproductive tract of females of A. gambiae showed a concentration of Asaia at the very periphery of the eggs, suggesting that transmission of Asaia from mother to offspring is likely mediated by a mechanism of egg-smearing. We suggest that Asaia has potential for use in the paratransgenic control of malaria transmitted by A. gambiae.


Subject(s)
Acetobacteraceae/physiology , Anopheles/microbiology , Symbiosis , Acetobacteraceae/genetics , Animals , Anopheles/growth & development , DNA, Bacterial/genetics , Female , Organisms, Genetically Modified , Ovary/microbiology , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL