Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Opt Express ; 32(6): 9671-9685, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571196

ABSTRACT

In this paper, we propose a high spectral efficiency modulation scheme based on joint interaction of orthogonal compressed chirp division multiplexing (OCCDM) and power superimposed code (PSC) under the intensity modulation and direct detection (IM/DD) system. OCCDM is a novel orthogonal chirp division multiplexing technology featuring spectral compression through the implementation of processing similar to a discrete Fourier transform, enhancing the spectral efficiency (SE) through bandwidth savings without loss of orthogonality of each chirp. Meanwhile, PSC technology enables multiple code words being transmitted superimposed on the same chirp. This technique involves allocating varying power levels to different users, thereby distinguishing them, increasing the transmission's net bit rate and substantially boosting the SE. The transmission has been performed experimentally using a 2 km 7-core fiber span. The impact of the above-mentioned technologies on the bit error rate (BER) performance is assessed in the power, frequency, and joint domain. The BER and enhancements in the SE can be balanced when the spectral bandwidth compression factor (α) and power distribution ratio are equal to 0.9 and 4, respectively. The observed outcome leads to the transmission's SE increase to more than double the baseline value, at 2.22 times. Based on the above analysis, we believe this structure is expected to become a potential for developing next-generation PON.

2.
PeerJ Comput Sci ; 10: e1833, 2024.
Article in English | MEDLINE | ID: mdl-38660213

ABSTRACT

With the emergence of Internet of Things (IoT) technology, a huge amount of data is generated, which is costly to transfer to the cloud data centers in terms of security, bandwidth, and latency. Fog computing is an efficient paradigm for locally processing and manipulating IoT-generated data. It is difficult to configure the fog nodes to provide all of the services required by the end devices because of the static configuration, poor processing, and storage capacities. To enhance fog nodes' capabilities, it is essential to reconfigure them to accommodate a broader range and variety of hosted services. In this study, we focus on the placement of fog services and their dynamic reconfiguration in response to the end-device requests. Due to its growing successes and popularity in the IoT era, the Decision Tree (DT) machine learning model is implemented to predict the occurrence of requests and events in advance. The DT model enables the fog nodes to predict requests for a specific service in advance and reconfigure the fog node accordingly. The performance of the proposed model is evaluated in terms of high throughput, minimized energy consumption, and dynamic fog node smart switching. The simulation results demonstrate a notable increase in the fog node hit ratios, scaling up to 99% for the majority of services concurrently with a substantial reduction in miss ratios. Furthermore, the energy consumption is greatly reduced by over 50% as compared to a static node.

3.
Opt Express ; 32(2): 1979-1997, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297738

ABSTRACT

This paper proposes a high-security chaotic encrypted power sparse coding division (CE-PSCD) scheme for 7-core fiber based on non-orthogonal multiple access (NOMA) technology. The method utilizes power multiplexing to realize parallel transmission of two signals. Joint encryption of the four-dimensional region is realized using constellation mapping encryption, carrier frequency encryption, symbol scrambling, and sparse code scrambling. What we believe to be a new dimension for encryption of autonomously designed sparse codes is proposed. Meanwhile, we hide the chaotic key in training sequence (TS) to realize the co-transmission of the key and the message. A 70 Gb/s CE-PSCD signal transmission over 2 km of 7-core fiber is demonstrated experimentally. At the limit of forward error correction (FEC) ∼3.8 × 10-3, the difference in the encrypted sensitivity among different users at the equal power level is 0.36 dB, which means that the fairness of users will not be destroyed. The key space can reach 10134, with a bit error rate (BER) of about 0.5 for brute-force cracking at illegal receivers. As long as the key bits in the hidden TS are wrong by one bit, the BER stays around 0.5. The results show no significant attenuation of the signal before and after encryption at either high or low power, verifying the high-security performance of our proposed scheme.

4.
Sensors (Basel) ; 24(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38400231

ABSTRACT

This study proposes and presents a new central office (CO) for the optical metro access network (OMAN) with an affordable and distinctive switching system. The CO's foundation is built upon a novel optical multicarrier (OMC) generation technique. This technique provides numerous frequency carriers that are characterized by a high tone-to-noise ratio (TNR) of 40 dB and minimal amplitude excursions. The purpose is to accommodate multiple users at the optical network unit side in the optical metropolitan area network (OMAN). The OMC generation is achieved through a cascaded configuration involving a single phase and two Mach Zehnder modulators without incorporating optical or electrical amplifiers or filters. The proposed OMC is installed in the CO of the OMAN to support the 1.2 Tbps downlink and 600 Gbps uplink transmission, with practical bit error rate (BER) ranges from 10-3 to 10-13 for the downlink and 10-6 to 10-14 for the uplink transmission. Furthermore, in the OMAN's context, optical fiber failure is a main issue. Therefore, we have proposed a possible solution for ensuring uninterrupted communication without any disturbance in various scenarios of main optical fiber failures. This demonstrates how this novel CO can rapidly recover transmission failures through robust switching a and centralized OLT. The proposed system is intended to provide users with a reliable and affordable service while maintaining high-quality transmission rates.

5.
Opt Express ; 31(22): 36123-36135, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017768

ABSTRACT

A new optical transmitting scheme based on chaotic constant component distribution matcher (CCDM) and Polar coding was proposed. The data is first encrypted by Polar coding using a five-dimensional chaotic sequence. Then the encrypted data is divided into two paths to perform chaotic CCDM encryption operations with different schemes. Finally, the two channels are merged, and the subcarriers are scrambled. The transmission experiment of 16QAM-OFDM signal on 2 km seven-core fiber is conducted to verify the scheme's feasibility. The experimental results show that the received optical power of all ONUs is less than -15dBm when the BER of all ONUs is reduced to less than 10-3. In addition, the key space of the proposed system reaches 1085, and the security performance is further enhanced. The advantages of BER and safety performance make this two-path chaotic encrypted OFDM-PON with an optimistic application prospect in the current optical transmission systems.

6.
PLoS One ; 18(11): e0286823, 2023.
Article in English | MEDLINE | ID: mdl-37967095

ABSTRACT

What are the effects of parenting styles on academic performance and how unequal are these effects on secondary school students from different gender and socioeconomic status families constitute the theme of this paper. A cross-sectional and purposive sampling technique was adopted to gather information from a sample of 448 students on a Likert scale. Chi-square, Kendall's Tau-c tests and hierarchical multiple regression analyses were used to determine the extent of the relationship among the variables. Chi-square and Kendall's Tau-c (Tc) test results established that the socioeconomic status of the respondent's family explained variation in children's academic performance due to parenting style; however, no significant difference was observed in the academic performance of students based on gender. Furthermore, hierarchal multiple regression analysis established that the family's socioeconomic status, authoritative parenting, permissive parenting, the interaction of socioeconomic status and authoritative parenting, and the interaction of socioeconomic status and permissive parenting were significant predictors (P<0.05) of students' academic performance. These predictor variables explained 59.3 percent variation in the academic performance of children (R2 = 0.593). Results of hierarchal multiple regression analysis in this study ranked ordered the most significant predictors of the academic performance of children in the following order. Family socioeconomic status alone was the strongest predictor (ß = 18.25), interaction of socioeconomic status and authoritative parenting was the second important predictor (ß = 14.18), authoritative parenting alone was third in importance (ß = 13.38), the interaction of socioeconomic status and permissive parenting stood at fourth place in importance (ß = 11.46), and permissive parenting was fifth (ß = 9.2) in influencing academic performance of children in the study area. Children who experienced authoritative parenting and were from higher socioeconomic status families perform better as compared to children who experienced authoritarian and permissive parenting and were from low socioeconomic status families.


Subject(s)
Academic Performance , Parenting , Humans , Child , Cross-Sectional Studies , Students , Social Class
7.
Opt Lett ; 48(20): 5253-5256, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37831840

ABSTRACT

In this Letter, a new, to the best of our knowledge, geometric shaping method for an ultrahigh-order 16384-ary quadrature amplitude modulation (16384QAM) constellation based on the delta-sigma modulation technique is proposed. Based on the characteristics of delta-sigma modulation, the constellation was optimized to obtain greater constellation gain and improve the maximum performance of the system. Finally, the proposed scheme was demonstrated on an intensity-modulated direct detection (IMDD) system through a 25 km single-mode fiber transmission. On performing experiments, it was found that the suggested approach increases the receiver sensitivity of ultrahigh-order QAM communication systems based on delta-sigma modulation by around 0.5 dB and further enhances the error performance limit.

8.
Exp Neurobiol ; 32(4): 216-246, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37749925

ABSTRACT

This review examines the role of impaired amyloid-ß clearance in the accumulation of amyloid-ß in the brain and the periphery, which is closely associated with Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). The molecular mechanism underlying amyloid-ß accumulation is largely unknown, but recent evidence suggests that impaired amyloid-ß clearance plays a critical role in its accumulation. The review provides an overview of recent research and proposes strategies for efficient amyloid-ß clearance in both the brain and periphery. The clearance of amyloid-ß can occur through enzymatic or non-enzymatic pathways in the brain, including neuronal and glial cells, blood-brain barrier, interstitial fluid bulk flow, perivascular drainage, and cerebrospinal fluid absorption-mediated pathways. In the periphery, various mechanisms, including peripheral organs, immunomodulation/immune cells, enzymes, amyloid-ß-binding proteins, and amyloid-ß-binding cells, are involved in amyloid-ß clearance. Although recent findings have shed light on amyloid-ß clearance in both regions, opportunities remain in areas where limited data is available. Therefore, future strategies that enhance amyloid-ß clearance in the brain and/or periphery, either through central or peripheral clearance approaches or in combination, are highly encouraged. These strategies will provide new insight into the disease pathogenesis at the molecular level and explore new targets for inhibiting amyloid-ß deposition, which is central to the pathogenesis of sporadic AD (amyloid-ß in parenchyma) and CAA (amyloid-ß in blood vessels).

9.
Opt Lett ; 48(17): 4548, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656550

ABSTRACT

This publisher's note contains corrections to Opt. Lett.48, 4101 (2023)10.1364/OL.493540.

10.
Opt Express ; 31(19): 30130-30145, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710562

ABSTRACT

This paper proposes a three-dimensional power sparse code division non-orthogonal multiple access (3D-PSCD-NOMA) scheme with 3D constellation pair mapping. The proposed sparse code is based on a balanced incomplete block design (BIBD). Its correlation matrix performs the overall signal mapping of multi-user information. Power multiplexing is realized by overlaying multi-level power signals with different path losses through pair mapping. Compared with the conventional 2D standard square 32 Quadrature Amplitude Modulation (QAM), the proposed 3D constellation pair mapping can improve the constellation points' minimum Euclidean distance (MED) by 17.7%, which is beneficial for the performance of the system. Based on obtaining the optimal power distribution ratio (PDR) for different schemes, a 3D-PSCD-NOMA signal with a rate of 15.22 Gb/s over a 25 km single-mode fiber (SMF) is experimentally performed. The experimental results show that 3D-PSCD-NOMA has a clear superiority. At the same rate, 3D-PSCD-NOMA2 can obtain a sensitivity gain of about 1.6 dB and 1.9 dB over the conventional 2D constellation. Moreover, 3D-PSCD-NOMA reduces the system's peak-to-average power ratio (PAPR) by 1.3 dB. The difference in sensitivity of the system before and after sparse code is about 0.15 dB, and no significant degradation occurred. Due to its advantages in transmission performance, 3D-PSCD-NOMA is a potential solution for future optical access systems.

11.
Opt Express ; 31(17): 27711-27722, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710840

ABSTRACT

In this paper, we propose a multi-dimensional multiplexing scheme for space division multiplexing optical transmission systems based on quaternion chaotic encryption. A constellation compression shaping mapping method is designed to replace the traditional 2n mapping scheme, which leads to flexible encoding modulation. In order to achieve orthogonality between data symbols and effectively suppress crosstalk, the spectrally superposed transmission of three-dimensional (3D) constellation data is carried out by code division multiplexing and 4D carrier-less amplitude phase joint modulation techniques based on orthogonal basis. The Chen's chaotic model is utilized to generate the rotation angle of the constellation points, which enables data encryption without changing the transmitted power, enhancing system's security. The feasibility and superiority of the proposed scheme are successfully verified by constructing an experimental platform for a seven-core fiber transmission system.

12.
Opt Express ; 31(17): 28355-28369, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710891

ABSTRACT

Constellation shaping (CS) has always been a popular research hotspot in optical communication. Recently, most researchers have focussed on using constellation-shaping technology to improve the system's performance, ignoring the additional penalty it brings to the coherent system. This paper proposes a method of constellation truncation using sub-constellation overlap to perform CS on quadrature amplitude modulation (QAM). The experimental results show that compared with the traditional probabilistic shaping 16QAM, the proposed scheme can effectively avoid the extra penalty brought by CS and achieve a gain from 0.5 to 1.5 dB in optical signal-to-noise ratio. To practically verify the proposed scheme's performance, 7-core 16 km fiber span is deployed in the field to experimentally perform space division multiplexed coherent transmission. The wavelength division multiplexing (WDM) of 93 carriers was used to achieve coherent transmission at a net rate of 116.66-Tb/s.

13.
Opt Lett ; 48(15): 4101-4104, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37527128

ABSTRACT

This study aims to present a non-orthogonal multiple access (NOMA) security scheme based on constellation camouflage and selective mapping. To improve the security of the system, we use a four-dimensional chaos model to camouflage high-power signals at the transmitter. The constellation diagram of high power is disguised from binary phase-shift keying (BPSK) form to quadrature phase-shift keying (QPSK) form, and after power multiplexing, further camouflaged from 8 points to 16 points. To improve the transmission performance of the designed system as much as possible and not increase the computational complexity, we use the selective mapping method in the process of power multiplexing and use the region decision method for demodulation at the receiving end. The proposed scheme is verified by experiments on a 2-km 7-core optical fiber, and achieves the safety transmission of a power division multiplexing-orthogonal frequency-division multiplexing (PDM-OFDM) signal with a net rate of 97.38 Gb/s without signal damage. The maximum achievable key space of the proposed scheme is 10135. Hence, it is a feasible and secure non-orthogonal multiple access-passive optical network scheme.

14.
J Fluoresc ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37535232

ABSTRACT

The current study presents a steadfast, simple, and efficient approach for the non-invasive determination of glycosuria of diabetes mellitus using fluorescence spectroscopy. A Xenon arc lamp emitting light in the range of 200-950 nm was used as an excitation source for recording the fluorescent spectra from the urine samples. A consistent fluorescence emission peak of glucose at 450 nm was found in all samples for an excitation wavelength of 370 nm. For confirmation and comparison, the fluorescence spectra of non-diabetic (healthy controls) were also acquired in the same spectral range. It was found that fluorescence emission intensity at 450 nm increases with increasing glucose concentration in urine. In addition, optimized synchronous fluorescence emission at 357 nm was used for simultaneously determining a potential diabetes biomarker, Tryptophan (Trp) in urine. It was also found that the level of tryptophan decreases with the increase in urinary glucose concentration. The quantitative estimation of urinary glucose can be demonstrated based on the intensity of emission light carried by fluorescence light. Moreover, the dissimilarities were further emphasized using the hierarchical cluster analysis (HCA) algorithm. HCA gives an obvious separation in terms of dendrogram between the two data sets based on characteristic peaks acquired from their fluorescence emission signatures. These results recommend that urinary glucose and tryptophan fluorescence emission can be used as potential biomarkers for the non-invasive analysis of diabetes.

15.
Opt Lett ; 48(16): 4205-4208, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37581993

ABSTRACT

In this Letter, we propose a highly secure three-dimensional orthogonal frequency division multiplexing (3D-OFDM) transmission scheme based on two-level noise masking key-accompanying transmission. The original signal is encrypted with a spherical constellation to ensure the system's security with a 4D Lorenz-like model. The key realizes two-level noise masking by introducing additional noise bits at the bit level and hiding in a noise-like spherical shell at the constellation level. Moreover, the proposed method of placing the key in the encrypted signal can simultaneously transmit the encrypted signal and the key. A 101.06-Gb/s 3D-OFDM encrypted signal with the proposed scheme over a 2-km 7-core fiber experiment was successfully implemented. Experimental results show that the security performance of the system can be guaranteed under the conditions of partial key leakage and key misplacement at the illegal receiver. At the same time, the key masking degree (KMD) of the proposed two-level noise masking can reach 3267, which effectively guarantees the safe transmission of the key.

16.
Opt Lett ; 48(16): 4408-4411, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582044

ABSTRACT

In this paper, an artificial-intelligence-based secure semantic optical communication scheme is proposed. The semantic features of the original text information are extracted using Transformer. Compared with other networks, Transformer reduces the complexity of the structure and the associated training cost by using the multi-head attention mechanism. To solve the security problem, the encryption scheme is applied to an orthogonal frequency division multiplexed passive optical network (OFDM-PON). The proposed scheme applies chaotic sequences to produce masking vectors. We encrypt the constellation and frequency, achieving a large key space of 1 × 10270. To prove that Transformer can effectively extract the semantic features of text, we have computed the values of ROUGE-1, ROUGE-2, and ROUGE-L, which are 40.9, 18.02, and 37.17, respectively. An encrypted 16 quadrature amplitude modulation (16QAM) OFDM signal transmission over a 2 km seven-core fiber with a data rate of 78.5 Gbits/s was experimentally demonstrated. During the experiments, the bit error rate (BER) was analyzed and the results show that the proposed system improves efficiency and security in an OFDM-PON system.

17.
Opt Express ; 31(9): 14673-14684, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37157326

ABSTRACT

In this paper, a high security chaotic encryption scheme for orthogonal frequency division multiplexing (OFDM) transmission system is proposed by using power division multiplexing (PDM) technology and four-dimensional region joint encryption. The scheme uses PDM to realize simultaneous transmission of multiple user information, which can achieve a good compromise among system capacity, spectral efficiency and user fairness. In addition, bit cycle encryption, constellation rotation disturbance (CRD) and region joint constellation disturbance (RJCD) are used to realize four-dimensional region joint encryption, effectively improving the physical layer security. The masking factor is generated by the mapping of two-level chaotic systems, which can enhance the nonlinear dynamics and improve the sensitivity of encrypted system. A 11.76 Gb/s OFDM signal transmission over 25 km standard single-mode fiber (SSMF) is experimentally demonstrated. At the forward-error correction (FEC) bit error rate (BER) limit -3.8×10-3, the proposed receiver optical power based on quadrature phase shift keying (QPSK) without encryption, QPSK with encryption, variant-8quadrature amplitude modulation (V-8QAM) without encryption and V-8QAM with encryption are about -13.5dBm, -13.6dBm, -12.2dBm, and -12.1dBm. The key space is up to 10128. The results show that this scheme not only improves the security of the system and the ability to resist attackers, but also improves the system capacity and has the potential to serve more users. It has a good application prospect in the future optical network.

18.
Opt Express ; 31(6): 10596-10616, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157603

ABSTRACT

High peak-to-average power ratio (PAPR) of the signal is a major drawback in optical orthogonal frequency division multiplexing (OFDM) system. In this paper, an intensity-modulated type Partial Transmit Sequences (PTS) based scheme is proposed and applied to the intensity-modulated OFDM (IMDD-OFDM) system. The proposed intensity-modulated type PTS (IM-PTS) scheme ensures that the time-domain signal output by the algorithm is real value. What's more, the complexity of the IM-PTS scheme has been reduced without much performance penalty. A simulation is performed to compare the PAPR of different signal. In the simulation, the PAPR of OFDM signal is reduced from 14.5 dB to 9.4 dB at 10-4 probability. We also compare the simulation results with another algorithm based on the PTS principle. A transmission experiment is conducted in a seven-core fiber IMDD-OFDM system at a rate of 100.8Gbit/s. The Error Vector Magnitude (EVM) of received signal is reduced from 9 to 8 at -9.4dBm received optical power. Furthermore, the experiment result shows that the reduction of complexity has little performance impact. The optimized intensity-modulated type PTS (O-IM-PTS) scheme effectively increases the tolerance of the nonlinear effect of the optical fiber and reduces the requirement for linear operating range of optical device in the transmission system. During the upgrade process of the access network, there is no need to replace the optical device in the communication system. What's more, the complexity of PTS algorithm has been reduced, which lower data processing performance requirements of the devices such as ONU and OLT. As a result, the cost of network upgrades is reduced a lot.

19.
Opt Express ; 31(5): 7425-7439, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859873

ABSTRACT

In this paper, we propose a performance improvement of non-orthogonal multiple access (NOMA) with a three-dimensional (3D) constellation and a two-dimensional Inverse Fast Fourier Transform IFFT modulator (2D-IFFT) for the passive optical network (PON). Two kinds of 3D constellation mapping are designed for the generation of a three-dimensional NOMA (3D-NOMA) signal. Higher-order 3D modulation signals can be obtained by superimposing signals of different power levels by pair mapping. Successive interference cancellation (SIC) algorithm is implemented at the receiver to remove interference from different users. Compared with the traditional two-dimensional NOMA (2D-NOMA), the proposed 3D-NOMA can increase the minimum Euclidean distance (MED) of constellation points by 15.48%, which enhances the bit error rate (BER) performance of the NOMA. The peak-to-average power ratio (PAPR) of NOMA can be reduced by 2 dB. A 12.17 Gb/s 3D-NOMA transmission over 25 km single-mode fiber (SMF) is experimentally demonstrated. The results show that at the bit error rate (BER) of 3.8 × 10-3, the sensitivity gain of the high-power signals of the two proposed 3D-NOMA schemes is 0.7 dB and 1 dB compared with that of 2D-NOMA under the condition of the same rate. Low-power level signal also has 0.3 dB and 1 dB performance improvement. Compared with 3D orthogonal frequency-division multiplexing (3D-OFDM), the proposed 3D-NOMA scheme could potentially expand the number of users without obvious performance degradation. Due to its good performance, 3D-NOMA is a potential method for future optical access systems.

20.
Opt Express ; 31(4): 6659-6674, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36823917

ABSTRACT

This paper proposes a 3-dimensional (3D) carrier-less amplitude and phase modulation (CAP) based on a pyramid constellation design encryption scheme for 7-core fiber in passive optical network (PON). The chaos sequences generated by the 4D hyperchaotic system are applied to produce the masking factor, and the pyramid Rubik's cube rotation rules are used to flip and rotate the constellation points. To verify the performance of the proposed 3D CAP-PON system, 25.5Gb/s encrypted Pyraminx-3D-CAP-16 signal transmission over 2 km 7-core fiber is experimentally demonstrated. Compared with the traditional 3D-CAP-16 signal, the proposed Pyraminx-3D-CAP-16 signal achieves a sensitivity gain of 0.5 dB under the limit of hard decision forward error correction (HD-FEC) 3.8 × 10-3. Compared with the Pyraminx-3D-CAP-16 signal, the encrypted Pyraminx-3D-CAP-16 signal has little difference from that before encryption, which has a great application prospect in the physical layer security enhancement of the 3D-CAP-PON system.

SELECTION OF CITATIONS
SEARCH DETAIL
...