Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
J Ethnobiol Ethnomed ; 20(1): 77, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155383

ABSTRACT

BACKGROUND: Wild food plants (WFPs) play an important role in the traditional dietary habits of various indigenous communities worldwide, particularly in mountainous regions. To understand the dynamics of food preferences, cross-cultural studies on food plants should be conducted across diverse ethnic groups in a given area. In this context, the current study investigated the use of WFPs by seven different cultural groups in the Kashmir Himalayan Region. In this area, people gather wild plants and their parts for direct consumption, traditional foods, or sale in local markets. Despite this reliance, documentation of the food system, especially concerning WFPs, is notably lacking. Hence, our research aimed to document WFPs, along with associated traditional ecological knowledge, and identify major threats to their long-term sustainability in Division Muzaffarabad. METHODS: Through a comprehensive approach involving questionnaires, interviews, focus groups, and market surveys, we gathered data from 321 respondents. PCA was performed to analyze threats and plant use using "factoextra" in R software. Origin Pro was used to create a chord diagram, while R software was used to generate a Polar heat map. Additionally, a Venn diagram was created using Bioinformatics software. RESULTS: The study included 321 informants, of whom 75.38% were men and 24.61% were women. In total, 113 plant taxa from 74 genera and 41 botanical families were reported. Polygonaceae and Rosaceae accounted for the majority (17 species each), followed by Lamiaceae (7 species). Leaves were the most used part as food sources (41.04%), followed by fruits (33.33%). Most of the species are consumed as cooked (46.46%) and as raw snacks (37.80%). A total of 47 plant species were collected and cooked as wild vegetables, followed by 40 species used as fruits. This study is the first to describe the market potential and ecological distribution of WFPs in the study area. Cross-comparison showed that utilization of WFPs varies significantly across the region and communities, including their edible parts and mode of consumption. Jaccard index (JI) value ranged from 5.81 to 25. Furthermore, the current study describes 29 WFPs and 10 traditional food dishes that have rarely been documented in Pakistan's ethnobotanical literature. Climate change, invasive species, expansion of agriculture, and plant diseases are some of the most significant threats to WFPs in the study area. CONCLUSIONS: The older age group has more knowledge about WFPs compared to the younger generation, who are not interested in learning about the utilization of WFPs. This lack of interest in information about WFPs among the younger generation can be attributed to their limited access to markets and availability of food plants in the study area. Traditional gathering of food plants has been reduced in younger generations during recent years; therefore, it is crucial to develop effective conservation strategies. These efforts not only safeguard indigenous flora, food knowledge, and cultural heritage, but they also contribute to food security and public health by utilizing local wild foods in the examined area.


Subject(s)
Food Security , Plants, Edible , Humans , Female , Male , India , Adult , Middle Aged , Cross-Cultural Comparison , Ethnobotany , Knowledge , Young Adult , Aged , Ecology
2.
Int J Biol Macromol ; 277(Pt 4): 134523, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111492

ABSTRACT

The present study reports the green synthesis of pectin-fabricated silver nanocomposites (Pectin-AgNPs) using Carpesium nepalense leaves extract, evaluating their bactericidal kinetics, in vivo hepatoprotective, and cytotoxic potentials along with possible mechanisms. GC/MS and LC/MS analyses revealed novel phytochemicals in the plant extract. The Pectin-AgNPs were characterized using UV/Vis, AFM, SEM, TEM, DLS, FTIR, and EDX techniques, showing a spherical morphology with a uniform size range of 50-110 nm. Significant antibacterial activity (P < 0.005) was found against four bacterial strains with ZIs of 4.1 ± 0.15 to 27.2 ± 3.84 mm. AFM studies revealed significant bacterial cell membrane damage post-treatment. At 0.05 mg/kg, the nanocomposites showed significant (P < 0.005) hepatoprotective activity in biochemical and histopathology analyses compared to the CCl4 control group. Pectin-AgNPs significantly reduced (P < 0.005) LDH, AST, ALT, ALP, and DB levels. qPCR analysis showed ameliorative effects on PPARs and Nrf2 gene expression, restoring gene alterations caused by CCl4 intoxication. In vivo acute toxicity studies confirmed low toxicity of Pectin-AgNPs in major organs. Pectin-AgNPs exhibited cytotoxic activity against HeLa cell lines at higher doses with an LC50 of 223.7 µg/mL. These findings demonstrate the potential of Pectin-AgNPs as promising antibacterial, hepatoprotective, and cytotoxic agents.

3.
Front Pharmacol ; 15: 1369659, 2024.
Article in English | MEDLINE | ID: mdl-39086396

ABSTRACT

COVID-19 is currently considered the ninth-deadliest pandemic, spreading through direct or indirect contact with infected individuals. It has imposed a consistent strain on both the financial and healthcare resources of many countries. To address this challenge, there is a pressing need for the development of new potential therapeutic agents for the treatment of this disease. To identify potential antiviral agents as novel dual inhibitors of SARS-CoV-2, we retrieved 404 alkaloids from 12 selected medicinal antiviral plants and virtually screened them against the renowned catalytic sites and favorable interacting residues of two essential proteins of SARS-CoV-2, namely, the main protease and spike glycoprotein. Based on docking scores, 12 metabolites with dual inhibitory potential were subjected to drug-likeness, bioactivity scores, and drug-like ability analyses. These analyses included the ligand-receptor stability and interactions at the potential active sites of target proteins, which were analyzed and confirmed through molecular dynamic simulations of the three lead metabolites. We also conducted a detailed binding free energy analysis of pivotal SARS-CoV-2 protein inhibitors using molecular mechanics techniques to reveal their interaction dynamics and stability. Overall, our results demonstrated that 12 alkaloids, namely, adouetine Y, evodiamide C, ergosine, hayatinine, (+)-homoaromoline, isatithioetherin C, N,alpha-L-rhamnopyranosyl vincosamide, pelosine, reserpine, toddalidimerine, toddayanis, and zanthocadinanine, are shortlisted as metabolites based on their interactions with target proteins. All 12 lead metabolites exhibited a higher unbound fraction and therefore greater distribution compared with the standards. Particularly, adouetine Y demonstrated high docking scores but exhibited a nonspontaneous binding profile. In contrast, ergosine and evodiamide C showed favorable binding interactions and superior stability in molecular dynamics simulations. Ergosine demonstrated exceptional performance in several key pharmaceutical metrics. Pharmacokinetic evaluations revealed that ergosine exhibited pronounced bioactivity, good absorption, and optimal bioavailability. Additionally, it was predicted not to cause skin sensitivity and was found to be non-hepatotoxic. Importantly, ergosine and evodiamide C emerged as superior drug candidates for dual inhibition of SARS-CoV-2 due to their strong binding affinity and drug-like ability, comparable to known inhibitors like N3 and molnupiravir. This study is limited by its in silico nature and demands the need for future in vitro and in vivo studies to confirm these findings.

4.
Open Life Sci ; 19(1): 20220895, 2024.
Article in English | MEDLINE | ID: mdl-38947765

ABSTRACT

Chenopodium ambrosioides aerial parts have been historically employed in traditional medicine for addressing various ailments such as headaches, abdominal discomfort, joint issues, and respiratory disorders, alongside treatments for lice and warts. This study aimed to conduct a comprehensive phytochemical analysis of C. ambrosioides and assess the acute and subacute toxicity of oral treatments using fractions in preclinical trials. Spectrophotometric analysis via LC-MS/MS was used to characterize the plant's chemical composition. Acute toxicity evaluation followed Organisation for Economic Co-operation and Development code 42 guidelines, conducted on adult male and female Wistar strain mice. Subsequently, Swiss mice were divided into six groups for the subacute toxicity study, receiving oral doses of 200 mg/kg extracts and fractions for 28 days. Daily observations and biochemical analyses were performed, with LC-MS/MS revealing a diverse array of compounds including organic acids, flavonoids, phenolic acids, rutin, hesperidin, nicotiflorine, and fumaric acid. Results indicated no lethality or alterations in body weight in treated groups, though some organ weight changes were noted. Biochemical analyses demonstrated values within the normal range for all groups, suggesting that the treatments did not induce adverse effects. Acute and subacute treatments with fractions did not result in lethality or toxic alterations at therapeutic doses, implying the safety of the product at appropriate levels. This study underscores the potential of C. ambrosioides as a safe therapeutic option warranting further exploration.

5.
Food Chem X ; 23: 101527, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38974201

ABSTRACT

Green leafy vegetables, especially microgreens are gaining popularity due to their high nutritional profiles, rich phytochemical content, and intense flavors. This review explores the growing commercial market for microgreens, especially in upscale dining and premium grocery outlets, highlighting consumer perceptions and their effect on market dynamics. Apart from these, the effect of modern agricultural methods that maximize the growth of microgreens is also examined. The value is anticipated to increase significantly, according to market predictions, from $1.7 billion in 2022 to $2.61 billion by 2029. Positive consumer views on microgreens health benefits drive this growth, although challenges such as varying levels of consumer awareness and income disparities affect sales. The review underscores the need for targeted research and strategic initiatives to enhance consumer understanding and improve cultivation methods to support market expansion in upcoming years.

6.
Food Chem X ; 23: 101579, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39027683

ABSTRACT

In the last decade, there's been a rising emphasis on eco-friendly solvents in industry and academia due to environmental concerns. Vegetable oils are now recognized as a practical, non-toxic option for extracting phytochemicals from herbs. This study presents a novel, green, and user-friendly method for extracting phenolic content from Crocus sativus L. waste using ultrasound. It replaces conventional organic solvents with sustainable sunflower oil, making the process eco-friendly and cost-effective. The effects of temperature (18-52 °C), ultrasonic time (5-55 min), and solid-solvent ratio (5-31 g/100 mL) were assessed by applying response surface methodology (RSM) and Central composite design. The combined impact of solid-solvent ratio, temperature, and ultrasonic time led to heightened phenolic content and antioxidant activity in the enriched oil. However, when these variables were at their maximum levels, there was a decline in these attributes. The specific conditions found to be ideal were a solid-to-liquid ratio of 26 g/100 mL, a temperature of 45 °C, and a duration of 45 min. The optimum extraction condition yielded the expected highest phenolic content (317.15 mg/ Kg), and antioxidant activity (89.34%). The enriched oil with flower saffron enabled the utilization of renewable natural ingredients, ensuring the production of a healthy extract or product. Also, enriched oils find diverse applications in areas such as food, aquaculture, and cosmetics.

7.
Food Chem X ; 23: 101580, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39027685

ABSTRACT

The aims of this study are the phytochemical exploration and food valorization of Schinus molle L. (S. molle) and Schinus terebinthifolia Raddi (S. terebinthifolia) from the Rabat, Morocco. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were used to analyze the chemical composition of the oils extracted from both species by soxhlet and maceration. Moreover, physicochemical characteristics such as lipid quality indexes such as thrombogenic index (TI), atherogenic index (AI), oxidation susceptibility (OS), and calculated oxidability (Cox) were determined. These characteristics included percentage acidity, peroxide, saponification, iodine, specific extinction values, chlorophyll, and carotenoid pigments. As results, the oil yields varied from 7% (S. molle) to 13% (S. terebinthifolia). In addition, unsaturated fatty acids represented the major fraction for S. terebinthifolia (79%) and S. molle (81%). However, S. terebinthifolia contains more saturated fatty acids (20%) than S. molle (16%) with a predominance of linoleic acid (59.53% and 55%, C18,2), oleic acid (19.29% and 21.69%, C18,1), and palmitic acid (12.56% and 15.48%, C16,0) in S. molle and S. terebinthifolia, respectively. Moreover, the main sterols are ß-sitosterol followed by campesterol and then Δ-5-avenasterol, while ß-sitosterol varies according to the species and the extraction method. Results revealed also that campesterol is influenced by the extraction results in a content of 179.66 mg/kg (soxhlet) and 63.48 mg/kg (maceration) for S. molle, while S. terebinthifolia yeilds concentrations of 170 mg/kg and 138 mg/kg, then Δ-5-avenasterol, which present with (117 mg/kg and 136 mg/kg), (34 mg/kg and 80 mg/kg) of the total amount of sterols for the oils extracted by soxhlet and maceration, respectively. In addition, there are favorable physicochemical properties for all oils, such as chlorophylls (0.4 to 0.8 mg/kg) and carotenoids (0.7 to 2 mg/kg). However, further investigations are needed to determine other chemical compounds of both extracts as well as to evaluate their biological and health benefits.

8.
Open Life Sci ; 19(1): 20220879, 2024.
Article in English | MEDLINE | ID: mdl-39005739

ABSTRACT

The corrosion of metals poses a threat to the economy, the environment, and human health due to undesirable reactions and contaminated products. Corrosion inhibitors, including natural products, can play a key role in protecting metallic materials, especially under challenging conditions. In this study, the roots of the Inula viscosa plant were examined for their ability to act as corrosion inhibitors in a 1 M hydrochloric acid (HCl) solution. Different extracts of the plant were evaluated for their corrosion inhibition capacity in a 1 M HCl solution. The effectiveness of different plant extracts was assessed, including an aqueous extract, an ethanolic extract, and a combined water-ethanol extract. Compounds present in the roots of Inula viscosa were identified using high-performance liquid chromatography. The electrochemical properties of the extracts were studied using various techniques such as open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization. Additionally, surface analysis after immersion was performed using scanning electron microscopy. Electrochemical data revealed that Inula viscosa root (IVR) extracts acted as mixed-type corrosion inhibitors with pronounced cathodic characteristics. The inhibitory efficiency was closely related to the concentration of Inula viscosa (I. viscosa), showing a significant increase with higher concentrations. This resulted in a decrease in corrosion current and an increase in polarization resistance. Notably, inhibitory efficiency reached high levels, up to 97.7% in mixed extract which represents a mixture between water and ethanol. In our study, it was observed that the mixed extract (water + ethanol) allowed for a greater corrosion inhibition compared to the other solvents studied, 97.7%. Surface analyses confirmed the formation of an organic film layer on the steel surface, attributed to the bonding of functional groups and heteroatoms in I. viscosa components. Therefore, this study paves the way for the potential integration of I. viscosa as a promising corrosion inhibition material, offering durable protection against steel corrosion and opening avenues for various related applications.

9.
Food Chem X ; 23: 101554, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39036476

ABSTRACT

Corn silk (Zea mays L.), an abundant agricultural waste, contains various bioactive compounds that exhibit promising health benefits. The current study focuses on development and optimization of corn silk-based instant mix using response surface methodology. The optimized product, with 14.66% corn silk, 10% sugar and 0.22% xanthan gum in a skim milk powder base, scored 0.925 desirability. The physico-chemical and sensory parameters of optimized mix closely aligned with expected values. The instant mix packaged in metallised polyester yielded superior preservation of quality indicators over 120 days compared to low-density polyethylene (LDPE) and high-density polyethylene (HDPE). The microbial load in corn silk instant mix was observed across packaging materials and highlighting hydroxyl methyl furfural (HMF) as the primary predictor of product stability, the study calculated a 94.95 days half-life at 10 °C. Corn silk's rich bioactive compound supports its integration into nutraceuticals and instant mixes, mitigating food waste while enhancing nutritional value. Novelty statement. In this study, corn silk powder was utilized for the development of the instant mix. This innovative approach transforms corn silk, typically discarded as agricultural waste, into a commercially sustainable product that delivers the nutrients of corn silk to a broader population. Despite fresh corn silk being a perishable commodity, it has very low storage shelf life. The developed instant mix effectively preserves its nutritional value for up to six months, offering a sustainable and nutritious option for consumers.

10.
Environ Geochem Health ; 46(8): 272, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958785

ABSTRACT

Mycotoxin contamination poses a significant problem in developing countries, particularly in northern Pakistan's fluctuating climate. This study aimed to assess aflatoxin contamination in medicinal and condiment plants in Upper Dir (dry-temperate) and Upper Swat (moist-temperate) districts. Plant samples were collected and screened for mycotoxins (Aflatoxin-B1 and Aflatoxin-B-2). Results showed high levels of AFB-1 (11,505.42 ± 188.82) as compared to AFB-2 (846 ± 241.56). The maximum contamination of AFB-1 in Coriandrum sativum (1154.5 ± 13.43 ng to 3328 ± 9.9 ng) followed by F. vulgare (883 ± 9.89 ng to 2483 ± 8.4 ng), T. ammi (815 ± 11.31 ng to 2316 ± 7.1 ng), and C. longa (935.5 ± 2.12 ng to 2009 ± 4.2 ng) while the minimum was reported in C. cyminum (671 ± 9.91 ng to 1995 ± 5.7 ng). Antifungal tests indicated potential resistance in certain plant species (C. cyminum) while A. flavus as the most toxins contributing species due to high resistance below 80% (54.2 ± 0.55 to 79.5 ± 2.02). HPLC analysis revealed hydroxyl benzoic acid (5136 amu) as the dominant average phytochemical followed by phloroglucinol (4144.31 amu) with individual contribution of 8542.08 amu and 12,181.5 amu from C. cyaminum. The comparison of average phytochemicals revealed the maximum concentration in C. cyminum (2885.95) followed by C. longa (1892.73). The findings revealed a statistically significant and robust negative correlation (y = - 2.7239 × + 5141.9; r = - 0.8136; p < 0.05) between average mycotoxins and phytochemical concentrations. Temperature positively correlated with aflatoxin levels (p < 0.01), while humidity had a weaker correlation. Elevation showed a negative correlation (p < 0.05), while geographical factors (latitude and longitude) had mixed correlations (p < 0.05). Specific regions exhibited increasing aflatoxin trends due to climatic and geographic factors.


Subject(s)
Aflatoxins , Phytochemicals , Pakistan , Aflatoxins/analysis , Phytochemicals/pharmacology , Phytochemicals/analysis , Plants, Medicinal/chemistry , Plants, Medicinal/microbiology , Climate
11.
Physiol Plant ; 176(4): e14426, 2024.
Article in English | MEDLINE | ID: mdl-39049207

ABSTRACT

The Ziziphus genus, belonging to the Rhamnaceae family, holds significant economic, nutritional, and medicinal value. However, much remains to be discovered about its diversity and physical characteristics. Factors such as growth, resilience to changes, disease resistance, and unique features contribute to the quality of Ziziphus species. This study aims to investigate the genomes of 200 genotypes from five Ziziphus species: Ziziphus jujuba (Zj), Ziziphus nummularia (Zm), Ziziphus oxyphylla (Zx), Ziziphus mauritiana (Zm), and the cultivated variety Ziziphus jujube var. jujube, collected from Pakistan and China. Our goal is to identify single nucleotide polymorphisms (SNPs) associated with eight different traits and understand the genetic diversity within the selected Ziziphus species and their genotypes. Using high-quality SNPs obtained through genotype-by-sequencing (GBS), we conducted population structure, phylogenetic, and principal coordinates analyses, identifying a total of 10,945 clean SNPs. These genotypes were categorized into two groups, A and B. Natural Ziziphus variants in Pakistan, specifically Z. jujuba and Z. nummularia, exhibited high levels of genetic diversity and polymorphic information content (PIC) of 0.46 and 0.41, respectively, compared to other species. Furthermore, we identified 15 influential candidate genes that play crucial roles in regulating agronomic traits, such as fruit width and diameter, leaf width, plant height, and stem diameter within this group. This study provides valuable insights that can be utilized in Ziziphus breeding efforts.


Subject(s)
Genotype , Polymorphism, Single Nucleotide , Ziziphus , Ziziphus/genetics , Ziziphus/physiology , Polymorphism, Single Nucleotide/genetics , Phylogeny , Pakistan , Phenotype , Genome, Plant/genetics , China
12.
Front Immunol ; 15: 1281544, 2024.
Article in English | MEDLINE | ID: mdl-39050853

ABSTRACT

Opisthorchis viverrini is the etiological agent of the disease opisthorchiasis and related cholangiocarcinoma (CCA). It infects fish-eating mammals and more than 10 million people in Southeast Asia suffered from opisthorchiasis with a high fatality rate. The only effective drug against this parasite is Praziquantel, which has significant side effects. Due to the lack of appropriate treatment options and the high death rate, there is a dire need to develop novel therapies against this pathogen. In this study, we designed a multi-epitope chimeric vaccine design against O. viverrini by using immunoinformatics approaches. Non-allergenic and immunogenic MHC-1, MHC-2, and B cell epitopes of three candidate proteins thioredoxin peroxidase (Ov-TPx-1), cathepsin F1 (Ov-CF-1) and calreticulin (Ov-CALR) of O. viverrini, were predicted to construct a potent multiepitope vaccine. The coverage of the HLA-alleles of these selected epitopes was determined globally. Four vaccine constructs made by different adjuvants and linkers were evaluated in the context of their physicochemical properties, antigenicity, and allergenicity. Protein-protein docking and MD simulation found that vaccines 3 was more stable and had a higher binding affinity for TLR2 and TLR4 immune receptors. In-silico restriction cloning of vaccine model led to the formation of plasmid constructs for expression in a suitable host. Finally, the immune simulation showed strong immunological reactions to the engineered vaccine. These findings suggest that the final vaccine construct has the potential to be validated by in vivo and in vitro experiments to confirm its efficacy against the CCA causing O. viverrini.


Subject(s)
Antigens, Helminth , Bile Duct Neoplasms , Cholangiocarcinoma , Opisthorchiasis , Opisthorchis , Vaccines, Subunit , Opisthorchis/immunology , Animals , Cholangiocarcinoma/immunology , Vaccines, Subunit/immunology , Opisthorchiasis/immunology , Opisthorchiasis/prevention & control , Humans , Bile Duct Neoplasms/immunology , Antigens, Helminth/immunology , Antigens, Helminth/chemistry , Epitopes, B-Lymphocyte/immunology , Vaccine Development , Computational Biology/methods , Molecular Docking Simulation , Helminth Proteins/immunology , Helminth Proteins/chemistry , Epitopes, T-Lymphocyte/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 2/immunology
13.
BMC Infect Dis ; 24(1): 688, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987682

ABSTRACT

BACKGROUND: Dengue fever has become a significant worldwide health concern, because of its high morbidity rate and the potential for an increase in mortality rates due to lack of adequate treatment. There is an immediate need for the development of effective medication for dengue fever. METHODS: Homology modeling of dengue virus (DENV) non-structural 4B (NS4B) protein was performed by SWISS-MODEL to predict the 3D structure of the protein. Structure validation was conducted using PROSA, PROCHECK, Ramachandran plot, and VERIFY-3D. MOE software was used to find out the in-Silico inhibitory potential of the five triterpenoids against the DENV-NS4B protein. RESULTS: The SWISS-MODEL was employed to predict the three-dimensional protein structure of the NS4B protein. Through molecular docking, it was found that the chosen triterpenoid NS4B protein had a high binding affinity interaction. It was observed that the NS4B protein binding energy for 15-oxoursolic acid, betulinic acid, ursolic acid, lupeol, and 3-o-acetylursolic acid were - 7.18, - 7.02, - 5.71, - 6.67 and - 8.00 kcal/mol, respectively. CONCLUSIONS: NS4B protein could be a promising target which showed good interaction with tested triterpenoids which can be developed as a potential antiviral drug for controlling dengue virus pathogenesis by inhibiting viral replication. However, further investigations are necessary to validate and confirm their efficacy.


Subject(s)
Antiviral Agents , Dengue Virus , Molecular Docking Simulation , Triterpenes , Viral Nonstructural Proteins , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Triterpenes/pharmacology , Triterpenes/chemistry , Dengue Virus/drug effects , Dengue Virus/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protein Binding , Humans , Dengue/virology , Dengue/drug therapy , Protein Conformation , Membrane Proteins
14.
Open Life Sci ; 19(1): 20220892, 2024.
Article in English | MEDLINE | ID: mdl-38867920

ABSTRACT

Salinity accumulation poses a threat to the production and productivity of economically important crops such as tomatoes (Solanum lycopersicum L.). Currently, salt tolerance breeding programs have been limited by insufficient genetic and physiological knowledge of tolerance-related traits and a lack of an efficient selection domain. For that purpose, we aimed to determine the ability of tomato cultivars to tolerate salt based on seed traits by multiple biochemical pathways. First, we tested three tomato cultivars according to their response to different sodium chloride (NaCl) concentrations (0, 6.3, 9.8, 13.0, and 15.8 dS m-1) and then we analysed their amino acids, organic acids, and phytohormones. Considering the results of germination traits, it is possible to conclude that cultivar H-2274 was more tolerant to salt stress than others. As a result, multivariate discriminant analysis including principal component analysis and two-way hierarchical clustering analyses were constructed and demonstrated that tomato cultivars were separated from each other by the amino acid, organic acid, and phytohormone contents. Considering germination traits of tomato seeds, cv. 'H-2274' was more tolerant to salinity than others depending on high proline (29 pmol µl-1) and citric acid (568 ng µl-1) assays. Biochemical variability offers a valuable tool for investigating salt tolerance mechanisms in tomatoes, and it will be appreciated to find high-tolerant tomato cultivar(s) to saline conditions. Also, the findings of this study have significant potential for practical applications in agriculture, particularly in developing salt-tolerant tomato cultivars to enhance productivity in saline environments and address socio-economic challenges.

15.
Sci Rep ; 14(1): 13836, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879711

ABSTRACT

Climate change has brought an alarming situation in the scarcity of fresh water for irrigation due to the present global water crisis, climate variability, drought, increasing demands of water from the industrial sectors, and contamination of water resources. Accurately evaluating the potential of future rice genotypes in large-scale, multi-environment experiments may be challenging. A key component of the accurate assessment is the examination of stability in growth contexts and genotype-environment interaction. Using a split-plot design with three replications, the study was carried out in nine locations with five genotypes under continuous flooding (CF) and alternate wet and dry (AWD) conditions. Utilizing the web-based warehouse inventory search tool (WIST), the water status was determined. To evaluate yield performance for stability and adaptability, AMMI and GGE biplots were used. The genotypes clearly reacted inversely to the various environments, and substantial interactions were identified. Out of all the environments, G3 (BRRI dhan29) had the greatest grain production, whereas G2 (Binadhan-8) had the lowest. The range between the greatest and lowest mean values of rice grain output (4.95 to 4.62 t ha-1) was consistent across five distinct rice genotypes. The genotype means varied from 5.03 to 4.73 t ha-1 depending on the environment. In AWD, all genotypes out performed in the CF system. With just a little interaction effect, the score was almost zero for several genotypes (E1, E2, E6, and E7 for the AWD technique, and E5, E6, E8, and E9 for the CF method) because they performed better in particular settings. The GGE biplot provided more evidence in support of the AMMI study results. The study's findings made it clear that the AMMI model provides a substantial amount of information when evaluating varietal performance across many environments. Out of the five accessions that were analyzed, one was found to be top-ranking by the multi-trait genotype ideotype distance index, meaning that it may be investigated for validation stability measures. The study's findings provide helpful information on the variety selection for the settings in which BRRI dhan47 and BRRI dhan29, respectively, performed effectively in AWD and CF systems. Plant breeders might use this knowledge to choose newer kinds and to design breeding initiatives. In conclusion, intermittent irrigation could be an effective adaptation technique for simultaneously saving water and mitigating GHG while maintaining high rice grain yields in rice cultivation systems.


Subject(s)
Agricultural Irrigation , Climate Change , Gene-Environment Interaction , Genotype , Oryza , Oryza/genetics , Oryza/growth & development , Adaptation, Physiological/genetics , Droughts
16.
RSC Adv ; 14(27): 19539-19549, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38895531

ABSTRACT

Ascorbic acid plays a pivotal role in the human body. It maintains the robustness, enlargement, and elasticity of the collagen triple helix. However, the abnormal concentration of ascorbic acid causes various diseases, such as scurvy, cardiovascular diseases, gingival bleeding, urinary stones, diarrhea, stomach convulsions, etc. In the present work, an iron-doped hydroxyapatite (HAp@Fe2O3)-based biosensor was developed for the colorimetric detection of ascorbic acid based on a low-cost, biocompatible, and ubiquitous material. Due to the catalytic nature of HAp owing to the acidic and basic moieties within the structure, it was used as a template for HAp@Fe2O3 synthesis. This approach provides an active as well as large surface area for the sensing of ascorbic acid. The synthesized platform was characterized by various techniques, such as UV-Vis, FTIR, SEM, XRD, TGA, EDX, etc. The HAp@Fe2O3 demonstrated inherent peroxidase-like activity in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) oxidized with the assistance of H2O2. It resulted in the color changing to blue-green, and after the addition of ascorbic acid, the color changed to colorless, resulting in the reduction of TMB. To achieve optimal sensing parameters, experimental conditions were optimized. The quantity of HAp@Fe2O3, H2O2, pH, TMB, time, and the concentration of ascorbic acid were fine-tuned. The linear range for the proposed sensor was 0.6-56 µM, along with a limit of detection of 0.16 µM and a limit of quantification of 0.53 µM. The proposed sensor detects ascorbic acid within 75 seconds at room temperature. The proposed platform was also applied to quantitatively check the concentration of ascorbic acid in a physiological solution.

17.
ACS Omega ; 9(24): 25555-25574, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911815

ABSTRACT

Arachis hypogaea is the most significant oilseed nutritious legume crop in agricultural trade across the world. It is recognized as a valued crop for its contributions to nourishing food, as a cooking oil, and for meeting the protein needs of people who are unable to afford animal protein. Currently, its production, marketability, and consumption are hindered because of Aspergillus species infection that consequently contaminates the kernels with aflatoxins. Regarding health concerns, humans and animals are affected by acute and chronic aflatoxin toxicity and millions of people are at high risk of chronic levels. Most methods used to store peanuts are traditional and serve effectively for short-term storage. Now the question for long-term storage has been raised, and this promptly finds potential approaches to the issue. It is imperative to reduce the aflatoxin levels in peanuts to a permissible level by introducing detoxifying innovations. Most of the detoxification reports mention physical, chemical, and biological techniques. However, many current approaches are impractical because of time consumption, loss of nutritional quality, or weak detoxifying efficiency. Therefore, it is crucial to investigate practical, economical, and green methods to control Aspergillus flavus that address current global food security problems. Herein, a green and economically revolutionary way is a nanotechnology that has demonstrated its potential to connect farmers to markets, elevate international marketability, improve human and animal health conditions, and enhance food quality and safety by the management of fungal diseases. Due to the antimicrobial potential of nanoparticles, they act as nanofungicides and have an incredible role in the control of aflatoxins. Nanoparticles have ultrasmall sizes and therefore penetrate the fungal body and invade the pathogen machinery, leading to fungal cell death by ROS production, mutation in DNA, disruption of organelles, and membrane leakage. This is the first mechanistic overview that unveils a comprehensive insight into aflatoxin contamination in peanuts, its prevalence, health effects, and management in addition to nanotechnological interventions that serve as a triple defense approach to detoxify aflatoxins. The optimum use of nanofungicides ensures food safety and the development of goals, especially "zero hunger".

18.
Chem Biodivers ; : e202401209, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865194

ABSTRACT

This research aimed to evaluate the antidiabetic, dermatoprotective, and antibacterial activities of Mentha viridis L. essential oil (MVEO) collected in the province of Ouezzane (Northwest Morocco). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the main constituents of MVEO were carvone (37.26 %), 1,8-cineole (11.82 %), limonene (5.27 %), α-terpineol (4.16 %), and ß-caryophyllene (4.04 %). MVEO showed strong inhibitory effects on α-amylase and α-glucosidase activities, exceeding those of acarbose, but weak anti-elastase activity. The main compounds, ß-caryophyllene (IC50=79.91±2.24 and 62.08±2.78 µg/mL) and limonene (IC50=90.73±3.47 and 68.98±1, 60 µg/mL), demonstrated the strongest inhibitory effects on both digestive enzymes (α-glucosidase and α-amylase, respectively). In silico investigations, using molecular docking, also showed the inhibitory potential of these bioactive compounds against the enzymes tested. In conclusion, MVEO, due to its main components such as limonene, 1,8-cineole, ß-caryophyllene, carvone, and α-terpineol, shows promising prospects for drug discovery and natural therapeutic applications.

19.
Heliyon ; 10(8): e30105, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38699715

ABSTRACT

In this study, green synthesis of gold nanoparticles (AuNPs) using aqueous extract from Hymenaea courbaril resin (HCR) is reported. The successful formation, functional group involvement, size, and morphology of the subject H. courbaril resin mediated gold nanoparticles (HCRAuNPs) were confirmed by Ultra Violet-Visible (UV-vis) spectroscopy, Fourier-Transform Infrared spectroscopy (FTIR), and Transmission Electron Microscopy (TEM) techniques. Stable and high yield of HCRAuNPs was formed in 1:15 (aqueous solution: salt solution) reacted in sunlight as indicated by the visual colour change and appearance of surface Plasmon resonance (SPR) at 560 nm. From the FT-IR results, the phenolic hydroxyl (-OH) functional group was found to be involved in synthesis and stabilization of nanoparticles. The TEM analysis showed that the particles are highly dispersed and spherical in shape with average size of 17.5 nm. The synthesized HCRAuNPs showed significant degradation potential against organic dyes, including methylene blue (MB, 85 %), methyl orange (MO, 90 %), congo red (CR, 83 %), and para nitrophenol (PNP, 76 %) up to 180 min. The nanoparticles also demonstrated the effective detection of pharmaceutical pollutants, including amoxicillin, levofloxacin, and azithromycin in aqueous environment as observable changes in color and UV-Vis spectral graph.

20.
Heliyon ; 10(9): e29658, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694111

ABSTRACT

In the current study, seven (7) aurone derivatives (ADs) were synthesized and employed to in-vitro LOX and COX-2 assays, in-vivo models of acetic acid-induced mice writhing, formalin-induced mice paw licking and tail immersion test to evaluate their analgesic potential at the doses of 10 mg and 20 mg/kg body weight. Molecular docking was performed to know the active binding site at both LOX and COX-2 as compared to standard drugs. Among the ADs, 2-(3,4-dimethoxybenzylidene)benzofuran-3(2H)-one (WE-4)possessed optimal LOX and COX-2 inhibitory strength (IC50=0.30 µM and 0.22 µM) as compared to standard (ZileutonIC50 = 0.08 µM, CelecoxibIC50 = 0.05 µM). Similarly in various pain models compound WE-4 showed significantly (p < 0.05) highest percent analgesic potency as compared to control at a dose of 20 mg/kg i.e. 77.60 % analgesic effect in acetic acid model, 49.97 % (in Phase-1) and 70.93 % (inPhase-2) analgesic effect in formalin pain model and 74.71 % analgesic response in tail immersion model. By the administration of Naloxone, the tail flicking latencies were reversed (antagonized) in all treatments. The WE-4 (at 10 mg/kg and 20 mg/kg) was antagonized after 90 min from 11.23 ± 0.93 and 13.41 ± 1.21 to 5.30 ± 0.48 and 4.80 ± 0.61 respectively as compared to standard Tramadol (from 17.74 ± 1.33 to 3.70 ± 0.48), showing the opiodergic receptor involvement. The molecular docking study of ADs revealed that WE-4 had a higher affinity for LOX and COX-2 with docking scores of -4.324 and -5.843 respectively. As a whole, among the tested ADs, compound WE-4 demonstrated excellent analgesic effects that may have been caused by inhibiting the LOX and COX-2 pathways.

SELECTION OF CITATIONS
SEARCH DETAIL