Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 260
Filter
1.
Eur J Clin Pharmacol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722350

ABSTRACT

PURPOSE: Currently, body weight-based dosing of rifampicin is recommended. But lately, fat-free mass (FFM) was reported to be superior to body weight (BW). The present evaluation aimed to assess the influence of body mass-related covariates on rifampicin's pharmacokinetics (PK) parameters in more detail using non-linear mixed effects modeling (NLMEM). METHODS: Twenty-four healthy Caucasian volunteers were enrolled in a bioequivalence study, each receiving a test and a reference tablet of 600 mg of rifampicin separated by a wash-out period of at least 9 days. Monolix version 2023R1 was used for NLMEM. Monte Carlo simulations (MCS) were performed to visualize the relationship of body size descriptors to the exposure to rifampicin. RESULTS: A one-compartment model with nonlinear (Michaelis-Menten) elimination and zero-order absorption kinetics with a lag time best described the data. The covariate model including fat-free mass (FFM) on volume of distribution (V/F) and on maximum elimination rate (Vmax/F) lowered the objective function value (OFV) by 56.4. The second-best covariate model of sex on V/F and Vmax/F and BW on V/F reduced the OFV by 51.2. The decrease in unexplained inter-individual variability on Vmax/F in both covariate models was similar. For a given dose, MCS showed lower exposure to rifampicin with higher FFM and accordingly in males compared to females with the same BW and body height. CONCLUSION: Our results indicate that beyond BW, body composition as reflected by FFM could also be relevant for optimized dosing of rifampicin. This assumption needs to be studied further in patients treated with rifampicin.

2.
Sci Rep ; 14(1): 9978, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693252

ABSTRACT

An extremely important oil crop in the world, Helianthus annuus L. is one of the world's most significant members of the Asteraceae family. The rate and extent of seed germination and agronomic features are consistently affecting  by temperature (T) and changes in water potential (ψ). A broad hydrothermal time model with T and ψ components could explain sunflower responses over suboptimal T and ψ. A lab experiment was performed using the HTT model to discover both T and ψ and their interactive effects on sunflower germination and also to figure  out the cardinal Ts values. The sunflower seeds were germinated at temperatures (15 °C, 20 °C, 25 °C and 30 °C); each Ts had five constant ψs of 0, 0.3, 0.6, 0.9, and 1.2 MPa via PEG 6000 as osmotic stress inducer. The results revealed that highest germination index was found in seed grown at 20 °C in distilled water (0 MPa) and the lowest at 30 °C with osmotic stress of (- 1.2 MPa). The highest value of germination rate index was found in seed grown at 20 °C in distilled water (0 MPa) and the lowest at 15 °C with an osmotic stress of (- 1.2 MPa). In conclusion, water potential, temperature, and their interactions have a considerable impact on seed germination rate, and other metrics (GI, SVI-I, GRI, GE, SVI-II, and MGT). Seeds sown  at 20 °C with zero water potential showed high germination metrics such as GE, GP, GRI, and T50%. The maximum value to TTsub noted at 30 °C in - 0.9 MPa osmotic stress and the minimum value was calculated at 15 °C in - 1.2 MPa osmotic stress. The result of TTsupra recorded highest at 15 °C in  controlled group (0 MPa). Moreover, θH was  highest at 30 °C in controlled condition (0 MPa) and minimum value was observed at  20 °C under - 1.2 MPa osmotic stress. The value of θHTT were  maximum at  30 °C in controlled group (0 MPa) and minimum value was  recorded at 15 °C under - 1.2 MPa osmotic potential. The base, optimum and ceiling temperatures for sunflower germination metrics in this experiment were noted  6.8, 20 and 30 °C respectively.


Subject(s)
Germination , Helianthus , Osmotic Pressure , Seeds , Temperature , Helianthus/growth & development , Helianthus/physiology , Seeds/growth & development , Water , Models, Theoretical
3.
Environ Res ; : 119069, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735376

ABSTRACT

Dwarf bamboo (Indocalamus decorus) is an O3-tolerant plant species. To identify the possible mechanism and response of leaf morphological, antioxidant, and anatomical characteristics to elevated atmospheric O3 (EO3) concentrations, we exposed three-year-old I. decorus seedlings to three O3 levels (low O3-LO: ambient air; medium O3-MO: Ambient air+70ppb high O3-HO: Ambient air+140ppb O3) over a growing season using open-top chambers. Leaf shape and stomatal characteristics, and leaf microscopic structure of I. decorus were examined. The results indicated that 1) the stomata O3 flux (Fst) of HO decreased more rapidly under EO3 as the exposure time increased. The foliar O3 injury of HO and MO occurred when AOT40 was 26.62 ppm·h and 33.20 ppm·h, respectively, 2) under EO3, leaf number, leaf mass per area, leaf area, and stomata length/width all decreased, while leaf thickness, stomatal density, width, and area increased compared to the control, 3) MDA and total soluble protein contents all showed significantly increase under HO (36.57% and 32.77%) and MO(31.91% and 19.52%) while proline contents only increased under HO(33.27%). 4) MO and HO increased bulliform cells numbers in the leaves by 6.28% and 23.01%, respectively. HO reduced the transverse area of bulliform cells by 13.73%, while MO treatments had no effect, and 5) the number of fusoid cells interspace, the transverse area of fusoid cells interspace, and mesophyll thickness of HO significantly increased by 11.16%, 28.58%, and 13.42%, respectively. In conclusion, I. decorus exhibits strong O3 tolerance characteristics, which stem from adaptions in the leaf's morphological, structural, antioxidant, and anatomical features. One critical attribute was the enlargement of the bulliform cell transverse area and the transverse area of fusoid cells interspace that drove this resistance to O3. Local bamboo species with high resistance to O3 pollution thus need to be promoted for sustained productivity and ecosystem services in areas with high O3 pollution.

4.
Geoderma ; 443: 116831, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38533356

ABSTRACT

Soils are a major player in the global carbon (C) cycle and climate change by functioning as a sink or a source of atmospheric carbon dioxide (CO2). The largest terrestrial C reservoir in soils comprises two main pools: organic (SOC) and inorganic C (SIC), each having distinct fates and functions but with a large disparity in global research attention. This study quantified global soil C research trends and the proportional focus on SOC and SIC pools based on a bibliometric analysis and raise the importance of SIC pools fully underrepresented in research, applications, and modeling. Studies on soil C pools started in 1905 and has produced over 47,000 publications (>1.7 million citations). Although the global C stocks down to 2 m depth are nearly the same for SOC and SIC, the research has dominantly examined SOC (>96 % of publications and citations) with a minimal share on SIC (<4%). Approximately 40 % of the soil C research was related to climate change. Despite poor coverage and publications, the climate change-related research impact (citations per document) of SIC studies was higher than that of SOC. Mineral associated organic carbon, machine learning, soil health, and biochar were the recent top trend topics for SOC research (2020-2023), whereas digital soil mapping, soil properties, soil acidification, and calcite were recent top trend topics for SIC. SOC research was contributed by 151 countries compared to 88 for SIC. As assessed by publications, soil C research was mainly concentrated in a few countries, with only 9 countries accounting for 70 % of the research. China and the USA were the major producers (45 %), collaborators (37 %), and funders of soil C research. SIC is a long-lived soil C pool with a turnover rate (leaching and recrystallization) of more than 1000 years in natural ecosystems, but intensive agricultural practices have accelerated SIC losses, making SIC an important player in global C cycle and climate change. The lack of attention and investment towards SIC research could jeopardize the ongoing efforts to mitigate climate change impacts to meet the 1.5-2.0 °C targets under the Paris Climate Agreement of 2015. This bibliographic study calls to expand the research focus on SIC and including SIC fluxes in C budgets and models, without which the representation of the global C cycle is incomplete.

5.
ACS Omega ; 9(8): 8632-8653, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38434807

ABSTRACT

Agriculture waste has increased annually due to the global food demand and intensive animal production. Preventing environmental degradation requires fast and effective agricultural waste treatment. Aerobic digestion or composting uses agricultural wastes to create a stabilized and sterilized organic fertilizer and reduces chemical fertilizer input. Indeed, conventional composting technology requires a large surface area, a long fermentation period, significant malodorous emissions, inferior product quality, and little demand for poor end results. Conventional composting loses a lot of organic nitrogen and carbon. Thus, this comprehensive research examined sustainable and adaptable methods for improving agricultural waste composting efficiency. This review summarizes composting processes and examines how compost additives affect organic solid waste composting and product quality. Our findings indicate that additives have an impact on the composting process by influencing variables including temperature, pH, and moisture. Compost additive amendment could dramatically reduce gas emissions and mineral ion mobility. Composting additives can (1) improve the physicochemical composition of the compost mixture, (2) accelerate organic material disintegration and increase microbial activity, (3) reduce greenhouse gas (GHG) and ammonia (NH3) emissions to reduce nitrogen (N) losses, and (4) retain compost nutrients to increase soil nutrient content, maturity, and phytotoxicity. This essay concluded with a brief summary of compost maturity, which is essential before using it as an organic fertilizer. This work will add to agricultural waste composting technology literature. To increase the sustainability of agricultural waste resource utilization, composting strategies must be locally optimized and involve the created amendments in a circular economy.

6.
BMC Plant Biol ; 24(1): 108, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347449

ABSTRACT

Soil pollution with heavy metals has grown to be a big hassle, leading to the loss in farming production particularly in developing countries like Pakistan, where no proper channel is present for irrigation and extraction of these toxic heavy metals. The present study aims to ameliorate the damages caused by heavy metal ions (Hg-Mercury) on rapeseed (Brassica napus L.) via a growth regulator (α-tocopherol 150 mg/L) and thermopriming technique at 4 °C and 50 °C to maintain plant agronomical and physiological characteristics. In pot experiments, we designed total of 11 treatments viz.( T0 (control), T1 (Hg4ppm), T2 (Hg8ppm), T3 (Hg4ppm + 4 °C), T4 (Hg4ppm + 4 °C + tocopherol (150 m/L)), T5 (Hg4ppm + 50 °C), T6 (Hg4ppm + 50 °C + tocopherol (150 mg/L)), T7 (Hg8ppm + 4 °C), T8 (Hg8ppm + 4 °C + tocopherol (150 mg/L)), T9 (Hg8ppm + 50 °C), T10 (Hg8ppm + 50 °C + tocopherol (150 mg/L) the results revealed that chlorophyll content at p < 0.05 with growth regulator and antioxidant enzymes such as catalase, peroxidase, and malondialdehyde enhanced up to the maximum level at T5 = Hg4ppm + 50 °C (50 °C thermopriming under 4 ppm mercuric chloride stress), suggesting that high temperature initiate the antioxidant system to reduce photosystem damage. However, protein, proline, superoxide dismutase at p < 0.05, and carotenoid, soluble sugar, and ascorbate peroxidase were increased non-significantly (p > 0.05) 50 °C thermopriming under 8 ppm high mercuric chloride stress (T9 = Hg8ppm + 50 °C) representing the tolerance of selected specie by synthesizing osmolytes to resist oxidation mechanism. Furthermore, reduction in % MC (moisture content) is easily improved with foliar application of α-tocopherol and 50 °C thermopriming and 4 ppm heavy metal stress at T6 = Hg4ppm + 50 °C + α-tocopherol (150 mg/L), with a remarkable increase in plant vigor and germination energy. It has resulted that the inhibitory effect of only lower concentration (4 ppm) of heavy metal stress was ameliorated by exogenous application of α-tocopherol and thermopriming technique by synthesizing high levels of proline and antioxidant activities in maintaining seedling growth and development on heavy metal contaminated soil.


Subject(s)
Brassica napus , Metals, Heavy , Soil Pollutants , Antioxidants/metabolism , alpha-Tocopherol/pharmacology , alpha-Tocopherol/metabolism , Brassica napus/metabolism , Mercuric Chloride/toxicity , Mercuric Chloride/metabolism , Tocopherols/metabolism , Tocopherols/pharmacology , Metals, Heavy/metabolism , Proline/metabolism , Soil Pollutants/metabolism
8.
Sci Rep ; 14(1): 3225, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38332029

ABSTRACT

The maize (Zea mays L.) is a monocot that is a member of the Poaceae family and a valuable feed for livestock, human food, and raw material for various industries. The halothermal time model determines how plants respond to salt (NaCl) stress under sub-optimal conditions. This model examines the relation between NaClb (g), GR, GP, salinity and temperature stress on germination of seeds dynamics in various crops. Five constant temperatures i.e. 20, 25, 30, 35, and 40 °C and five ψ levels (NaCl concentrations converted to ψ - 0, - 0.2, - 0.4, - 0.6, and - 0.8 MPa) were used in this experiment. In light of the results, the maximum halo-thermal time constant value was recorded at 35 °C temperature, while maximum germination percentage was detected at 30 °C in the controlled condition. Moreover, the lowermost value was recorded at 20 °C at - 0.8 MPa osmotic potential. The highest CAT, APX, and GPX activities were recorded at 15 °C at - 0.8 MPa, while the lowest values were observed for 0 MPa at 30 °C temperature. In conclusion, by employing the halo thermal time model, the germination of maize variety (var.30W52) was accurately predicted for the first time under varying levels of temperature and osmotic potentials.


Subject(s)
Sodium Chloride , Zea mays , Humans , Temperature , Poaceae , Seeds/physiology , Germination/physiology
10.
J Environ Manage ; 353: 120174, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38316073

ABSTRACT

The pace of species extinction and deforestation has increased dramatically due to the substantial increase in global environmental degradation. This trend is approaching the crucial temperature threshold of 2 °C and calls for more attention. Although previous research has observed the individual impacts of forest depletion, structural change, economic growth, and urbanization on various sustainability outcomes, there has been no previous research into their interrelationships with an emphasis on the load capacity factor (LCF). Furthermore, no previous study has examined the environmental impacts of the abovementioned variables by contrasting the results of LCF and CO2 emissions in Pakistan. Therefore, this research suggests a theoretical framework that integrates these concepts, provides a roadmap for an effective and sustainable mitigation strategy for Pakistan and compares LCF results with CO2 emissions. Using the time-series data from 1970 to 2021, a unique and sophisticated dynamic Autoregressive Distributed Lag (DARDL) technique, the authors found that (i) a 1 % rise in forest depletion leads to a decline in load capacity factor by 0.026 %. (ii) A one per cent upsurge in structural change fosters environmental sustainability by raising the load capacity factor by 0.084 %. (iii) An increase of 1 % in economic growth dwindles the load capacity factor by 0.027 %. (iv) A one per cent surge in urbanization enhances the load capacity factor by 0.029 %. The findings suggest that Pakistan's Government should promote afforestation by emphasizing the constructive role of structural change in achieving environmental sustainability.


Subject(s)
Carbon Dioxide , Forests , Pakistan , Carbon Dioxide/analysis , Economic Development , Urbanization
11.
Heliyon ; 10(2): e24581, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298711

ABSTRACT

Hepatitis C virus (HCV) infection remains one of the leading causes of liver complications globally. Ubiquitin Specific Peptidase-18 (USP18) is a ubiquitin-specific protease that cleaves interferon-stimulated gene 15 (ISG15) from ISGylated protein complexes and is involved in regulating interferon responsiveness. To study the effect of direct-acting antivirals (DAAs) on the USP18 gene using qPCR, 132 participants were recruited and classified into different groups based on treatment duration. USP18 expression was raised compared to rapid virologic response (RVR) and early virologic response (EVR) groups with P = 0.0026 and P = 0.0016, respectively. USP18 was found to be 7.36 folds higher in naïve patients than those with RVR and sustained viral response (SVR). In RVR and SVR groups where patients had cleared HCV RNA after treatment with direct-acting antiviral agents (DAA) therapy, the expression of USP18 was found to be low, with a fold change of 1.3 and 1.4 folds, respectively. Expression of USP18 was significantly higher in the non-RVR group than in the RVR group. In the No EVR group, gene expression was significantly higher than in the EVR group. It is concluded that targeting HCV proteins using DAAs can cause USP18 expression to be normalized more effectively. Moreover, USP18 is a vital marker indicating treatment resistance and distinguishing responders from non-responders during DAA therapy.

12.
Pharmacol Res ; 200: 107076, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237646

ABSTRACT

Sciatica characterized by irritation, inflammation, and compression of the lower back nerve, is considered one of the most common back ailments globally. Currently, the therapeutic regimens for sciatica are experiencing a paradigm shift from the conventional pharmacological approach toward exploring potent phytochemicals from medicinal plants. There is a dire need to identify novel phytochemicals with anti-neuropathic potential. This review aimed to identify the potent phytochemicals from diverse medicinal plants capable of alleviating neuropathic pain associated with sciatica. This review describes the pathophysiology of sciatic nerve pain, its cellular mechanisms, and the pharmacological potential of various plants and phytochemicals using animal-based models of sciatic nerve injury-induced pain. Extensive searches across databases such as Medline, PubMed, Web of Science, Scopus, ScienceDirect, and Google Scholar were conducted. The findings highlights 39 families including Lamiaceae, Asteraceae, Fabaceae, and Apocyanaceae and Cucurbitaceae, effectively treating sciatic nerve injury-induced pain. Flavonoids made up 53% constituents, phenols and terpenoids made up 15%, alkaloids made up 13%, and glycosides made up 6% to be used in neuorpathic pain. Phytochemicals derived from various medicinal plants can serve as potential therapeutic targets for both acute and chronic sciatic injury-induced neuropathic pain.


Subject(s)
Neuralgia , Plants, Medicinal , Sciatic Neuropathy , Sciatica , Animals , Humans , Plants, Medicinal/chemistry , Sciatica/drug therapy , Sciatica/etiology , Neuralgia/drug therapy , Neuralgia/etiology , Sciatic Neuropathy/drug therapy , Inflammation/drug therapy , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/chemistry , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry
13.
Environ Sci Pollut Res Int ; 31(1): 445-457, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38012485

ABSTRACT

This study aims to investigate the global perspective on the relationship between financial inclusion and environmental degradation, taking into account the potential moderating role of information and communication technology (ICT). The research utilizes panel data from 131 countries, covering the period of 1995 to 2019. The findings show that financial inclusion has significant and positive impact on carbon emissions, implying that as financial inclusion increases, so do carbon emissions. Moreover, our findings reveal a significant negative moderating effect of the ICT on the relationship between financial inclusion and carbon emissions. This implies that the impact of financial inclusion on carbon emissions is contingent upon the level of ICT development. The robustness of these findings is confirmed through the use of alternative proxies for the explanatory and moderating variables, as well as alternative estimation methods. The outcomes of this study carry significant implications for both policy and practice.


Subject(s)
Carbon Dioxide , Economic Development , Communication , Information Technology , Carbon
14.
Food Funct ; 15(1): 310-325, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38086666

ABSTRACT

Constipation is a prevalent gastrointestinal (GI) problem affecting a large number of individuals. This study aimed to investigate peristalsis-promoting potential characteristics of Ligilactobacillus acidipiscis YJ5 and the underlying molecular mechanism. The study demonstrated the relieving effect of L. acidipiscis YJ5 on constipation in both zebrafish and mouse models. L. acidipiscis YJ5 intervention significantly increased intestinal peristalsis by reducing the peak time and increasing the fluorescence disappearance rate in the zebrafish model. In the mouse model, the symptoms of constipation relief induced by L. acidipiscis YJ5 included a shortened first black stool time, an increased number of defecation particles, an accelerated propulsion rate of the small intestine, and an increase in fecal water content. L. acidipiscis YJ5 was found to reduce the expression of colonic aquaporins to normalize the colonic water transport system of constipated mice. Additionally, L. acidipiscis YJ5 reversed loperamide-induced morphological damage in the ileum and colon and increased the colonic mucosal barrier. The results of the 16S rRNA gene analysis indicated that L. acidipiscis YJ5 could reverse the structure of gut microbiota to a near-normal group, including levels of ß-diversity, phylum, family, and genus. Furthermore, the fermentation supernatant of L. acidipiscis YJ5 was shown to relieve constipation, and metabolomics analysis revealed that these positive effects were related to its metabolites like malic acid and heliangin.


Subject(s)
Gastrointestinal Microbiome , Zebrafish , Mice , Animals , RNA, Ribosomal, 16S/genetics , Constipation/drug therapy , Constipation/chemically induced , Water/pharmacology
15.
Cardiovasc Revasc Med ; 58: 16-22, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37487789

ABSTRACT

BACKGROUND: The optimum timing of surgical intervention in complicated left-sided infective endocarditis is not well established. Guidelines from various professional societies are not consistent regarding this. Data concerning this remains limited with conflicting results. METHODS: The national inpatient database (NIS) was used to identify patients hospitalized from the year 2016 to 2020 for infective endocarditis and who underwent surgical intervention for complicated left-sided endocarditis. Primary and secondary outcomes were analyzed in patients who had surgical intervention within 7 days (early surgery group) and after 7 days (late surgery group) of the index hospitalization. RESULTS: Primary outcome [composite of all-cause death, acute cerebrovascular accident (CVA), peripheral septic emboli, intracranial or intraspinal abscess, and cardiac arrest] was better in the early surgery group compared to the late surgery group 32.6 % vs 45.1 % [adjusted Odds ratio (aOR) = 0.59, 95 % Confidence interval (CI) = 0.52-0.67, P value â‰ª 0.001]. This was mainly due to better incidence of acute CVA (15.7 %vs 24 %, aOR = 0.59, CI = 0.50-0.69, P value â‰ª 0.001), peripheral septic emboli (18.5 % vs 27.3 %, aOR = 0.60, CI = 0.52-0.70, P value â‰ª 0.001) and intracranial/intraspinal abscess (1.2 % vs 4.74 %, aOR = 0.24, CI = 0.14-0.38, P value â‰ª 0.001). There is no difference in the incidence of all-cause in-hospital death (7.57 % vs 7.75 % aOR = 0.97, CI = 0.77-1.23, P value = 0.82) or cardiac arrest (3.4 % vs 3.54 %, aOR = 0.96, CI = 0.68-1.35, P value = 0.80). CONCLUSION: Surgical intervention within 7 days of index hospitalization is associated with a better incidence of acute CVA, peripheral septic emboli, and intracranial or intraspinal abscess but not with a better incidence of all-cause in-hospital death.


Subject(s)
Endocarditis, Bacterial , Endocarditis , Heart Arrest , Stroke , Humans , Abscess/complications , Hospital Mortality , Endocarditis/diagnosis , Endocarditis/surgery , Endocarditis, Bacterial/surgery , Retrospective Studies
16.
Eur J Pharmacol ; 964: 176195, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38142849

ABSTRACT

The study was designed to investigate the antihypertensive potential of 2-(2, 5-dioxo-1-phenylpyrrolidin-3-yl)-3-(4-isopropylphenyl)-2-methylpropanal (Comp-1) and 2-(1-benzyl-2,5-dioxopyrrolidin-3-yl)-3-(4-isopropylphenyl)-2-methylpropanal (Succ-5) in rats. The study results showed that, just like nifedipine (the standard reference drug), the test compounds, Comp-1 (at doses of 15 and 20 mg/kg) and Succ-5 (at a dose of 20 mg/kg) had significant antihypertensive effect against deoxycorticosterone acetate-salted rats. The test compounds maintained the level of cardiac markers troponin I and creatinine kinase myocardial bands (CK-MB) in serum, and modulate the oxidative stress markers Glutathione s-transferase (GST) activity, reduced glutathione (GSH), catalase levels, and lipid peroxidation (LPO). These compounds also reduced the expression of inflammatory markers, including cyclooxygenase-2 (COX-2) and tumor necrosis factor alpha (TNF-α) in heart tissues. Furthermore, in the ex-vivo study, the test substances relaxed the contractions induced by phenylephrine (PE) and potassium (K+). Vasodilation was endothelium-independent because the test substances showed nearly the same effect in aortic rings with intact endothelium, denuded endothelium, and with L-NAME pretreatment. The test compounds shifted the calcium curve to the right, i.e., contraction was inhibited and decreased the maximal response. This study demonstrated the antihypertensive, anti-inflammatory, antioxidant, and vasodilate effects of the test compounds. In addition, the results supported the phenomenon of calcium channel blockades responsible for vasodilation.


Subject(s)
Aldehydes , Antihypertensive Agents , Rats , Animals , Antihypertensive Agents/pharmacology , Aldehydes/pharmacology , Vasodilation , Nifedipine/pharmacology , Endothelium, Vascular , Vasodilator Agents/pharmacology , Aorta, Thoracic , Dose-Response Relationship, Drug
17.
Comput Biol Med ; 169: 107906, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154156

ABSTRACT

Studies on nonhuman primates, wild-type and transgenic mice have shown the presence of SARS-CoV-2 RNA components in the brains. Despite the Blood-Brain Barrier (BBB) provides protection there are less evidences on how the SARS-CoV-2 crosses the BBB. Given that there is an increase of Omicron reinfection rates, transmissibility rate and involvement to cause neurological dysfunctions, we hypothesized to investigate how the Omicron variant (B.1.1.529) binds structurally to key BBB-maintaining proteins and thus can possibly challenge the integrity and transportation to the brain. By using molecular dynamics simulation approaches we examined the interaction of Omicron variant (B.1.1.529) with different structural and transporter proteins located at the BBB. Our results show that in Zona Ocludin 1-RBD complex, we observe a distinct pattern. Omicron demonstrates a docking score of -88.9 ± 6.8 kcal/mol and six interactions, while the wild type (WT) presents a higher score of -94.0 ± 2.3 kcal/mol, forming eight interactions. Comparing affinities, the WT-RBD displays a stronger preference for Claudin-5, boasting a docking score of -110.2 ± 3.0 and nine interactions, versus Omicron-RBD's slightly reduced engagement, with a docking score of -105.6 ± 0.2 and seven interactions. Interestingly, the Omicron variant exhibits heightened stability in interactions with Glucose Transporter and ABC transporters, registering docking scores of -110.6 ± 1.9 and -112.0 ± 3.6 kcal/mol, respectively. This surpasses the WT's respective scores of -95.2 ± 2.2 and -104.0 ± 6.2 kcal/mol, reflecting a unique interaction profile. Rigorous molecular dynamics simulations validate our findings. Our study emphasizes the Omicron variant's increased affinity towards transporter proteins, illuminating potential implications for BBB integrity and brain transportation. While these insights offer a valuable framework, comprehensive experimental validation is indispensable for a comprehensive understanding.


Subject(s)
Blood-Brain Barrier , RNA, Viral , Animals , Mice , Brain , Molecular Dynamics Simulation , SARS-CoV-2
18.
Sci Rep ; 13(1): 21697, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38066051

ABSTRACT

Pakistan is the 8th most climate-affected country in the globe along with a semi-arid to arid climate, thereby the crops require higher irrigation from underground water. Moreover, ~ 70% of pumped groundwater in irrigated agriculture is brackish and a major cause of secondary salinization. Cucumber (Cucumis sativus L.) is an important vegetable crop with an annual growth rate of about 3.3% in Pakistan. However, it is a relatively salt-sensitive crop. Therefore, a dire need for an alternate environment-friendly technology like grafting for managing salinity stress in cucumber by utilizing the indigenous cucurbit landraces. In this regard, a non-perforated pot-based study was carried out in a lath house to explore indigenous cucurbit landraces; bottle gourd (Lagenaria siceraria) (cv. Faisalabad Round), pumpkin (Cucurbit pepo. L) (cv. Local Desi Special), sponge gourd (Luffa aegyptiaca) (cv. Local) and ridge gourd (Luffa acutangula) (cv. Desi Special) as rootstocks for inducing salinity tolerance in cucumber (cv. Yahla F1). Four different salts (NaCl) treatments; T0 Control (2.4 dSm-1), T1 (4 dSm-1), T2 (6 dSm-1) and T3 (8 dSm-1) were applied. The grafted cucumber plants were transplanted into the already-induced salinity pots (12-inch). Different morpho-physio-biochemical, antioxidants, ionic, and yield attributes were recorded. The results illustrate that increasing salinity negatively affected the growing cucumber plants. However, grafted cucumber plants showed higher salt tolerance relative to non-grafted ones. Indigenous bottle gourd landrace (cv. Faisalabad Round) exhibited higher salt tolerance compared to non-grafted cucumber plants due to higher up-regulation of morpho-physio-biochemical, ionic, and yield attributes that was also confirmed by principal component analysis (PCA). Shoot and root biomass, chlorophylls contents (a and b), activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) enzymes, antioxidants scavenging activity (ASA), ionic (↑ K and Ca, ↓ Na), and yield-related attributes were found maximum in cucumber plants grafted onto indigenous bottle gourd landrace. Hence, the indigenous bottle gourd landrace 'cv. Faisalabad round' may be utilized as a rootstock for cucumber under a mild pot-based saline environment. However, indigenous bottle gourd landrace 'cv. Faisalabad round' may further be evaluated as rootstocks in moderate saline field conditions for possible developing hybrid rootstock and, subsequently, sustainable cucumber production.


Subject(s)
Cucumis sativus , Cucurbita , Luffa , Salt Tolerance , Fruit , Agriculture/methods , Antioxidants
19.
Langmuir ; 39(50): 18447-18457, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38055936

ABSTRACT

Graphene oxide-based composite membranes have received enormous attention for highly efficient water desalination. Herein, we prepare arginine/graphene oxide (Arg/GO) composite membranes by surface functionalizing GO nanosheets with arginine amino acid. Arginine has a unique combination of hydroxyl and amino functional groups that cross-link GO nanosheets through hydrogen bonding and electrostatic interactions. The as-prepared Arg@GO composite membranes with different thicknesses are used to separate the salt and dye molecules. The 900-nm-thick Arg@GO composite membrane shows high rejection of 98% for NaCl and 99.8% for MgCl2, Ni(NO3)2, and Pb(NO3)2 with good water permeance. Such a membrane also shows a high separation efficiency (100%) for methylene blue, rhodamine B, and Evans blue dyes. At the same time, the ultrathin Arg@GO composite membrane (220 ± 10 nm) exhibits high water permeance of up to 2100 ± 10 L m-2 h-1 bar-1. Furthermore, the 900-nm-thick Arg@GO composite membrane is stable in an aqueous environment for 40 days with significantly less swelling. Therefore, these membranes can be utilized in future desalination and separation applications.

20.
Nanotechnology ; 35(6)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37997892

ABSTRACT

Triboelectric nanogenerators are remarkable devices that show great potential in harvesting energy from mechanical work and are generally used for sensing purposes. Here we report a novel method for the fabrication of ZnO microspheres and the formation of TENG based on ZnO/PDMS composite. The zinc oxide microspheres with needle decorated structure via thermal oxidation of metallic zinc was grown at 500 °C. The TENG was then fabricated using ZnO/PDMS composite with Au sputtered electrode. While PDMS is a good triboelectric material, its output power density is low. Embedding ZnO micro/nanostructures in PDMS increases the output power of PDMS-based TENG manifolds. ZnO with a high dielectric constant exhibits semiconductor properties as well as piezoelectric properties. This combines with the triboelectric properties of PDMS and gives a significant boost to the TENG performance. This composite structure is used for the fabrication of high output power density TENG using contact separation mode, where the power density of 27Wm-2was achieved. Consequently, a novel device application to detect surface charge density through the fabricated TENG is reported and the subsequent reconstruction of surface charge topology based on the detected surface charge density on large surfaces is presented. This technique may be used for the study of surface charge morphology, electrostatics, triboelectric constants, and various other material properties for characterization and application purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...