Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(26): 18385-18394, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38860251

ABSTRACT

Half-metallic semiconductors typically exhibit 100% spin polarization at the Fermi level which makes them desired materials for spintronic applications. In this study, we reported a half-metallic ferromagnetic nature in vacancy-ordered double perovskites Tl2WX6 (X = Cl and Br). The magnetic, electronic, and thermoelectric properties of the material are studied by the use of density functional theory (DFT). For the calculations of exchange-correlation potential, PBE-sol is employed while more accurate electronic band structure and density of states (DOS) are calculated by the mBJ potential. Both materials exhibited structural stability in the cubic structure with Fm3̄m space-group. The mechanical stability is confirmed by their computed elastic constants while their thermodynamic stability is attested by negative formation energy. The spin-based volume optimization suggested the ferromagnetic nature of the materials which is further confirmed by the negative value of the exchange energy Δ x(pd). Moreover, computed magnetic moment value for Tl2WCl6 and Tl2WBr6 is 2 µB and the majority of this comes from W. The spin-polarized band structure and DOS confirmed that both materials are half-metallic and at the Fermi level they exhibit 100% spin polarization. Furthermore, in the spin-down state, materials behave as semiconductors with wide bandgaps. Lastly, the thermoelectric properties are evaluated by the BoltzTrap code. The thermoelectric parameters which include the Seebeck coefficient, electrical conductivity, thermal conductivity, power factor, and figure of merit (ZT) are investigated in the range of temperatures from 200 to 800 K. The half-metallic ferromagnetic and thermoelectric characteristics make these materials desired for spintronics and thermoelectric applications.

3.
RSC Adv ; 14(14): 9799-9804, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38528921

ABSTRACT

Chemical sensors have a wide range of applications in a variety of industries, particularly for sensing volatile organic compounds. This work demonstrates the fabrication of a chemical sensor based on graphene deposited on Cu foils using low-pressure chemical vapor deposition, following its transfer on oxidized silicon through a wet etching method. Scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy of the transferred graphene were performed. A device was fabricated by simply connecting the strips of a Cu tape along the two opposite edges of graphene, which acted as a chemical sensor. The sensor was exposed to different analytes, namely acetone, propanol, benzyl chloride, nitrobenzene, carbon tetrachloride and acetic acid. A relative change in the resistance of the device was observed, which was attributed to the interaction of analytes with graphene as it changes charge concentrations in the graphene lattice. The fabricated sensor showed a notable sensitivity and response time for all analytes, particularly a sensitivity as high as 231.1 for nitrobenzene and a response time as short as 6.9 s for benzyl chloride. The sensor was also tested for analyte leakage from containers for domestic, laboratory and industrial applications.

4.
Molecules ; 26(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34770833

ABSTRACT

Graphene as a material for optoelectronic design applications has been significantly restricted owing to zero bandgap and non-compatible handling procedures compared with regular microelectronic ones. In this work, nitrogen-doped reduced graphene oxide (N-rGO) with tunable optical bandgap and enhanced electrical conductivity was synthesized via a microwave-assisted hydrothermal method. The properties of the synthesized N-rGO were determined using XPS, FTIR and Raman spectroscopy, UV/vis, as well as FESEM techniques. The UV/vis spectroscopic analysis confirmed the narrowness of the optical bandgap from 3.4 to 3.1, 2.5, and 2.2 eV in N-rGO samples, where N-rGO samples were synthesized with a nitrogen doping concentration of 2.80, 4.53, and 5.51 at.%. Besides, an enhanced n-type electrical conductivity in N-rGO was observed in Hall effect measurement. The observed tunable optoelectrical characteristics of N-rGO make it a suitable material for developing future optoelectronic devices at the nanoscale.

5.
Opt Express ; 28(25): 37860-37878, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379612

ABSTRACT

Graphene devices have been widely explored for photonic applications, as they serve as promising candidates for controlling light interactions resulting in extreme confinement and tunability of graphene plasmons. The ubiquitous presence of surface crumples in graphene, very less is known on how the crumples in graphene can affect surface plasmon resonance and its absorption properties. In this article, a novel approach based on the crumpled graphene is investigated to realize broadband tunability of plasmonic resonance through the mechanical reconfiguration of crumpled graphene resonators. The mechanical reconfiguration of graphene crumples combined with dual electrostatic gating (i.e. raising the Fermi level from 0.2-0.4 eV) of graphene serves as a tuning knob enabling broad spectral tunability of plasmonic resonance in the wavelength range of 14-24 µm. The crumpled region in the resonators exhibits an effective trapping potential where it extremely confines the surface plasmonic field on the surfaces of crumples providing localized surface plasmon resonance at the apices of these crumples. Finally, to achieve near-unity absorption >99% at the resonance wavelengths (17 µm and 22 µm) crumpled graphene resonators are loaded with four ring shaped metamaterials which result in the enhanced near-field intensity of ≈1.4×106. This study delivers insight into the tunability of crumpled graphene and their coupling mechanism by providing a new platform for the flexible and gate tunable graphene sensors at the infrared region.

6.
Molecules ; 25(18)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937975

ABSTRACT

In recent years, the field of nanophotonics has progressively developed. However, constant demand for the development of new light source still exists at the nanometric scale. Light emissions from graphene-based active materials can provide a leading platform for the development of two dimensional (2-D), flexible, thin, and robust light-emitting sources. The exceptional structure of Dirac's electrons in graphene, massless fermions, and the linear dispersion relationship with ultra-wideband plasmon and tunable surface polarities allows numerous applications in optoelectronics and plasmonics. In this article, we present a comprehensive review of recent developments in graphene-based light-emitting devices. Light emissions from graphene-based devices have been evaluated with different aspects, such as thermal emission, electroluminescence, and plasmons assisted emission. Theoretical investigations, along with experimental demonstration in the development of graphene-based light-emitting devices, have also been reviewed and discussed. Moreover, the graphene-based light-emitting devices are also addressed from the perspective of future applications, such as optical modulators, optical interconnects, and optical sensing. Finally, this review provides a comprehensive discussion on current technological issues and challenges related to the potential applications of emerging graphene-based light-emitting devices.


Subject(s)
Graphite/chemistry , Light , Nanotechnology/methods , Electric Conductivity , Electrochemistry , Electrodes , Electronics , Electrons , Luminescence , Optical Devices , Optics and Photonics , Surface Plasmon Resonance/methods , Temperature
7.
Molecules ; 25(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796504

ABSTRACT

Graphene and its hybrids are being employed as potential materials in light-sensing devices due to their high optical and electronic properties. However, the absence of a bandgap in graphene limits the realization of devices with high performance. In this work, a boron-doped reduced graphene oxide (B-rGO) is proposed to overcome the above problems. Boron doping enhances the conductivity of graphene oxide and creates several defect sites during the reduction process, which can play a vital role in achieving high-sensing performance of light-sensing devices. Initially, the B-rGO is synthesized using a modified microwave-assisted hydrothermal method and later analyzed using standard FESEM, FTIR, XPS, Raman, and XRD techniques. The content of boron in doped rGO was found to be 6.51 at.%. The B-rGO showed a tunable optical bandgap from 2.91 to 3.05 eV in the visible spectrum with an electrical conductivity of 0.816 S/cm. The optical constants obtained from UV-Vis absorption spectra suggested an enhanced surface plasmon resonance (SPR) response for B-rGO in the theoretical study, which was further verified by experimental investigations. The B-rGO with tunable bandgap and enhanced SPR could open up the solution for future high-performance optoelectronic and sensing applications.


Subject(s)
Biosensing Techniques/methods , Boron/chemistry , Electrochemistry/methods , Graphite/chemistry , Surface Plasmon Resonance/methods
8.
Sensors (Basel) ; 20(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512718

ABSTRACT

Plasmonic antennas are attractive optical components of the optoelectronic devices, operating in the far-infrared regime for sensing and imaging applications. However, low optical absorption hinders its potential applications, and their performance is limited due to fixed resonance frequency. In this article, a novel gate tunable graphene-metal hybrid plasmonic antenna with stacking configuration is proposed and investigated to achieve tunable performance over a broad range of frequencies with enhanced absorption characteristics. The hybrid graphene-metal antenna geometry is built up with a hexagon radiator that is supported by the Al2O3 insulator layer and graphene reflector. This stacked structure is deposited in the high resistive Si wafer substrate, and the hexagon radiator itself is a sandwich structure, which is composed of gold hexagon structure and two multilayer graphene stacks. The proposed antenna characteristics i.e., tunability of frequency, the efficiency corresponding to characteristics modes, and the tuning of absorption spectra, are evaluated by full-wave numerical simulations. Besides, the unity absorption peak that was realized through the proposed geometry is sensitive to the incident angle of TM-polarized incidence waves, which can flexibly shift the maxima of the absorption peak from 30 THz to 34 THz. Finally, an equivalent resonant circuit model for the investigated antenna based on the simulations results is designed to validate the antenna performance. Parametric analysis of the proposed antenna is carried out through altering the geometric parameters and graphene parameters in the Computer Simulation Technology (CST) studio. This clearly shows that the proposed antenna has a resonance frequency at 33 THz when the graphene sheet Fermi energy is increased to 0.3 eV by applying electrostatic gate voltage. The good agreement of the simulation and equivalent circuit model results makes the graphene-metal antenna suitable for the realization of far-infrared sensing and imaging device containing graphene antenna with enhanced performance.

9.
Sensors (Basel) ; 20(5)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143388

ABSTRACT

Exceptional advancement has been made in the development of graphene optical nanoantennas. They are incorporated with optoelectronic devices for plasmonics application and have been an active research area across the globe. The interest in graphene plasmonic devices is driven by the different applications they have empowered, such as ultrafast nanodevices, photodetection, energy harvesting, biosensing, biomedical imaging and high-speed terahertz communications. In this article, the aim is to provide a detailed review of the essential explanation behind graphene nanoantennas experimental proofs for the developments of graphene-based plasmonics antennas, achieving enhanced light-matter interaction by exploiting graphene material conductivity and optical properties. First, the fundamental graphene nanoantennas and their tunable resonant behavior over THz frequencies are summarized. Furthermore, incorporating graphene-metal hybrid antennas with optoelectronic devices can prompt the acknowledgment of multi-platforms for photonics. More interestingly, various technical methods are critically studied for frequency tuning and active modulation of optical characteristics, through in situ modulations by applying an external electric field. Second, the various methods for radiation beam scanning and beam reconfigurability are discussed through reflectarray and leaky-wave graphene antennas. In particular, numerous graphene antenna photodetectors and graphene rectennas for energy harvesting are studied by giving a critical evaluation of antenna performances, enhanced photodetection, energy conversion efficiency and the significant problems that remain to be addressed. Finally, the potential developments in the synthesis of graphene material and technological methods involved in the fabrication of graphene-metal nanoantennas are discussed.

10.
Nanoscale ; 12(7): 4729-4735, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32049081

ABSTRACT

Organic electrode materials have secured a distinctive place among the auspicious choices for modern energy storage systems due to their resource sustainability and environmental friendliness. Herein, a novel all-organic electrode-based sodium ion full battery is demonstrated using 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) as raw material for the assembly of positive and negative electrodes. Both the electrodes exhibit excellent cycling stability and rate performance. The fabricated organic sodium ion full battery not only displays a high initial capacity of 157 mA h g-1 with an average battery voltage of 1.47 V under the current density of 100 mA g-1, but also delivers a high energy density of 254 W h kg-1 and a high power density of 614 W kg-1. These sodium ion batteries with organic positive and negative electrode materials can provide a new way for energy storage devices.

11.
Nanotechnology ; 30(22): 225401, 2019 May 31.
Article in English | MEDLINE | ID: mdl-30716720

ABSTRACT

Nitrogen doping can provide a large number of active sites for lithium-ion storage, thus can yield a higher capacity for lithium-ion batteries. However, most of the reported N-doped graphene-based materials have low nitrogen content (<10 wt%) as the introduction of nitrogen atoms prefer to be produced at edges and defects in the graphene lattices. Owing to the formation of edges and defects, the doped states or active sites can easily be located and nitrogen contents can be determined precisely. Here we present the preparation of N-doped graphene nanoribbons with high nitrogen contents (11.8 wt%) and a facile tunable configuration of doped states. The material can be used as an anode for lithium-ion batteries and shows a higher capacity (the electrode has a reversible capacity of 1100.34 mA h g-1 at a charge/discharge rate of 100 mA g-1, corresponds to a discharge time of about 9 h), better rate performance (the electrode has a reversible capacity of 471 mA h g-1 at the current density of 2 A g-1, corresponds to a discharge time of about 11.6 min) and improved cycling stability (87.37% of the initial capacity after 200 cycles). The experimental results and first-principle calculations suggest that the residual oxygen-containing functional groups of N-doped graphene nanoribbons promote the formation of pyrrolic nitrogen at edges and substantially increase the room for nitrogen doping. This work opens new strategies for designing and developing N-doped graphene anodes for high performance lithium-ion batteries.

12.
J Food Prot ; 81(5): 806-809, 2018 05.
Article in English | MEDLINE | ID: mdl-29637809

ABSTRACT

Two hundred ten samples of selected vegetables (okra, pumpkin, tomato, potato, eggplant, spinach, and cabbage) from Faisalabad, Pakistan, were analyzed for the analysis of heavy metals: cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg). Inductively coupled plasma optical emission spectrometry was used for the analysis of heavy metals. The mean levels of Cd, Pb, As, and Hg were 0.24, 2.23, 0.58, and 7.98 mg/kg, respectively. The samples with Cd (27%), Pb (50%), and Hg (63%) exceeded the maximum residual levels set by the European Commission. The mean levels of heavy metals found in the current study are high and may pose significant health concerns for consumers. Furthermore, considerable attention should be paid to implement comprehensive monitoring and regulations.


Subject(s)
Food Contamination/analysis , Metals, Heavy/analysis , Vegetables/chemistry , Pakistan
13.
Appl Opt ; 57(6): 1296-1304, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29469827

ABSTRACT

We irradiate the single crystal boron-doped silicon (Si) at various laser fluences with 100 laser shots in ambient air at room temperature using an Nd:YAG laser and investigate its surface morphology and optical properties. The optical microscopy gives evidence of the formation of a crater and reveals that the heat-affected zone and melted area are increased with increase in laser fluence from 1.1 to 15.4 J/cm2. The micrographs obtained by scanning electron microscopy (SEM) show that the micro- and nano-structures such as microcracks, bubbles, nucleation sites, clusters, redeposited layered material, nanoparticles, and alike water droplet structures are formed on a laser-exposed Si surface. The optical profilometry of the irradiated Si further confirms the ablation and redeposition of the material and shows that the depth of the crater is increased from 12.1 to 15.2 µm with increase in fluence from 1.1 to 15.4 J/cm2. Raman spectroscopy of the samples shows that the irradiation generates anneal effects due to higher temperature, which increases the crystallinity of the Si. The ellipsometric analysis shows that the irradiation of Si with increasing laser fluence changes its optical constants (refractive index and extinction coefficient), which further influence its optical properties, e.g., reflectivity, absorptivity, and energy bandgap. The absorptivity of laser irradiated Si tends to increase with increasing laser fluence, and the energy bandgap is decreased accordingly due to increase in structural disorders. Our study shows that the controlled laser irradiation can tune the energy bandgap of exposed Si, and it makes the Si materials useful for the fabrication of optoelectronic devices such as solar cells, photovoltaic cells, and LEDs.

14.
Small ; 13(27)2017 07.
Article in English | MEDLINE | ID: mdl-28544765

ABSTRACT

Chemical vapor deposition (CVD) growth of high-quality graphene has emerged as the most promising technique in terms of its integrated manufacturing. However, there lacks a controllable growth method for producing high-quality and a large-quantity graphene films, simultaneously, at a fast growth rate, regardless of roll-to-roll (R2R) or batch-to-batch (B2B) methods. Here, a stationary-atmospheric-pressure CVD (SAPCVD) system based on thermal molecular movement, which enables fast B2B growth of continuous and uniform graphene films on tens of stacked Cu(111) foils, with a growth rate of 1.5 µm s-1 , is demonstrated. The monolayer graphene of batch production is found to nucleate from arrays of well-aligned domains, and the films possess few defects and exhibit high carrier mobility up to 6944 cm2 V-1 s-1 at room temperature. The results indicate that the SAPCVD system combined with single-domain Cu(111) substrates makes it possible to realize fast batch-growth of high-quality graphene films, which opens up enormous opportunities to use this unique 2D material for industrial device applications.

15.
Sci Rep ; 7: 45358, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28367988

ABSTRACT

The high-quality graphene film can be grown on single-crystal Cu substrate by seamlessly stitching the aligned graphene domains. The roles of O2 and H2 have been intensively studied in the graphene growth kinetics, including lowering the nucleation sites and tailoring the domain structures. However, how the O2 and H2 influence Cu orientations during recrystallization prior to growing graphene, still remains unclear. Here we report that the oxidation of Cu surface tends to stabilize the Cu(001) orientation while impedes the evolution of Cu(111) single domain during annealing process. The crystal orientation-controlled synthesis of aligned graphene seeds is further realized on the long-range ordered Cu(111) substrate. With decreasing the thickness of oxide layer on Cu surface by introducing H2, the Cu(001) orientation changes into Cu(111) orientation. Meanwhile, the average domain size of Cu foils is increased from 50 µm to larger than 1000 µm. The density functional theory calculations reveal that the oxygen increases the energy barrier for Cu(111) surface and makes O/Cu(001) more stable than O/Cu(111) structure. Our work can be helpful for revealing the roles of O2 and H2 in controlling the formation of Cu single-crystal substrate as well as in growing high-quality graphene films.

16.
Small ; 12(36): 5058-5065, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27425884

ABSTRACT

The increasing demand of electronic devices for physical motion detection has encouraged the development of highly elastic strain sensors. Especially, to capture wide-range physical movements, supremely stretchable and wide-range strain sensors are required. Here, a novel transparent, bendable, stretchable, and wide-range strain sensor based on a sandwich-like stacked graphene and Ag-nanowires hybrid structures is reported. The hybrid structures on 200% pre-stretched polyacrylate (PAC) are patterned which possess good bendability up to 2 mm radius, impressive stretchability up to 200% and comparatively low sheet resistance ≈200 Ω sq-1 with transparency 85%. Pre-stretched PAC technique enables the sensor to work well at extremely high strains and to sense the multidirectional strains efficiently. The Ag-nanowires pattern on PAC is fabricated via the bubble-template method, by which a uniform distribution of Ag-nanowires is achieved with significant connectivity throughout the surface. This not only decreases the power consumption but also enhances the sensitivity of the strain sensor. The demonstrated strain sensor is capable to sense strains between 5% and 200%, and the response time for this sensation is <1 ms.

SELECTION OF CITATIONS
SEARCH DETAIL
...