Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Chemistry ; 30(22): e202400066, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38366887

ABSTRACT

Photoisomerizable peptides are promising drug candidates in photopharmacology. While azobenzene- and diarylethene-containing photoisomerizable peptides have already demonstrated their potential in this regard, reports on the use of spiropyrans to photoregulate bioactive peptides are still scarce. This work focuses on the design and synthesis of a spiropyran-derived amino acid, (S)-2-amino-3-(6'-methoxy-1',3',3'-trimethylspiro-[2H-1-benzopyran-2,2'-indolin-6-yl])propanoic acid, which is suitable for the preparation of photoisomerizable peptides. The utility of this amino acid is demonstrated by incorporating it into the backbone of BP100, a known membrane-active peptide, and by examining the photoregulation of the membrane perturbation by the spiropyran-containing peptides. The toxicity of the peptides (against the plant cell line BY-2), their bacteriotoxicity (E. coli), and actin-auxin oscillator modulation ability were shown to be significantly dependent on the photoisomeric state of the spiropyran unit.


Subject(s)
Escherichia coli , Indoles , Nitro Compounds , Peptides , Benzopyrans/chemistry , Amino Acids
2.
J Vis Exp ; (199)2023 09 29.
Article in English | MEDLINE | ID: mdl-37843289

ABSTRACT

Photocontrolled, biologically active compounds are an emerging class of "smart" drug candidates. They provide additional safety in systemic chemotherapy due to their precise spatiotemporal activation by directing a benign, non-ionizable light to a specific location within the patient's body. This paper presents a set of methods to evaluate the in vitro potency and ex vivo efficiency of the photoactivation of photocontrolled, biologically active compounds as well as the in vivo efficacy at early stages of drug development. The methodology is applied to anticancer cytotoxic peptides, namely, the diarylethene-containing analogs of a known antibiotic, gramicidin S. The experiments are performed using 2D (adherent cells) and 3D (spheroids) cell cultures of a cancer cell line (Lewis lung carcinoma, LLC), live tissue surrogates (pork meat mince), and an allograft cancer model (subcutaneous LLC) in immunocompetent mice. The selection of the most effective compounds and estimation of realistic phototherapeutic windows are performed via automated fluorescence microscopy. The photoactivation efficiency at varying illumination regimens is determined at different depths in a model tissue, and the optimal light dosage is applied in the final therapeutic in vivo experiment.


Subject(s)
Antineoplastic Agents , Carcinoma, Lewis Lung , Humans , Animals , Mice , Antineoplastic Agents/pharmacology , Carcinoma, Lewis Lung/pathology
3.
Small ; 19(34): e2207593, 2023 08.
Article in English | MEDLINE | ID: mdl-37098631

ABSTRACT

For highly abundant silica nanomaterials, detrimental effects on proteins and phospholipids are postulated as critical molecular initiating events that involve hydrogen-bonding, hydrophobic, and/or hydrophilic interactions. Here, large unilamellar vesicles with various well-defined phospholipid compositions are used as biomimetic models to recapitulate membranolysis, a process known to be induced by silica nanoparticles in human cells. Differential analysis of the dominant phospholipids determined in membranes of alveolar lung epithelial cells demonstrates that the quaternary ammonium head groups of phosphatidylcholine and sphingomyelin play a critical and dose-dependent role in vesicle binding and rupture by amorphous colloidal silica nanoparticles. Surface modification by either protein adsorption or by covalent coupling of carboxyl groups suppresses the disintegration of these lipid vesicles, as well as membranolysis in human A549 lung epithelial cells by the silica nanoparticles. Furthermore, molecular modeling suggests a preferential affinity of silanol groups for choline head groups, which is also modulated by the pH value. Biomimetic lipid vesicles can thus be used to better understand specific phospholipid-nanoparticle interactions at the molecular level to support the rational design of safe advanced materials.


Subject(s)
Nanoparticles , Phospholipids , Humans , Phospholipids/chemistry , Unilamellar Liposomes , Silicon Dioxide/chemistry , Choline , Phosphatidylcholines/chemistry , Lecithins , Nanoparticles/chemistry
4.
Chemistry ; 29(29): e202300129, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36878866

ABSTRACT

Spatiotemporal structural alterations in cellular membranes are the hallmark of many vital processes. In these cellular events, the induction of local changes in membrane curvature often plays a pivotal role. Many amphiphilic peptides are able to modulate membrane curvature, but there is little information on specific structural factors that direct the curvature change. Epsin-1 is a representative protein thought to initiate invagination of the plasma membrane upon clathrin-coated vesicles formation. Its N-terminal helical segment (EpN18) plays a key role in inducing positive membrane curvature. This study aimed to elucidate the essential structural features of EpN18 in order to better understand general curvature-inducing mechanisms, and to design effective tools for rationally controlling membrane curvature. Structural dissection of peptides derived from EpN18 revealed the decisive contribution of hydrophobic residues to (i) enhancing membrane interactions, (ii) helix structuring, (iii) inducing positive membrane curvature, and (iv) loosening lipid packing. The strongest effect was obtained by substitution with leucine residues, as this EpN18 analog showed a marked ability to promote the influx of octa-arginine cell-penetrating peptides into living cells.


Subject(s)
Adaptor Proteins, Vesicular Transport , Peptides , Peptides/chemistry , Adaptor Proteins, Vesicular Transport/analysis , Adaptor Proteins, Vesicular Transport/chemistry , Adaptor Proteins, Vesicular Transport/metabolism , Cell Membrane/metabolism
5.
Biophys J ; 122(11): 2125-2146, 2023 06 06.
Article in English | MEDLINE | ID: mdl-36523158

ABSTRACT

The twin arginine translocase (Tat) exports folded proteins across bacterial membranes. The putative pore-forming or membrane-weakening component (TatAd in B. subtilis) is anchored to the lipid bilayer via an unusually short transmembrane α-helix (TMH), with less than 16 residues. Its tilt angle in different membranes was analyzed under hydrophobic mismatch conditions, using synchrotron radiation circular dichroism and solid-state NMR. Positive mismatch (introduced either by reconstitution in short-chain lipids or by extending the hydrophobic TMH length) increased the helix tilt of the TMH as expected. Negative mismatch (introduced either by reconstitution in long-chain lipids or by shortening the TMH), on the other hand, led to protein aggregation. These data suggest that the TMH of TatA is just about long enough for stable membrane insertion. At the same time, its short length is a crucial factor for successful translocation, as demonstrated here in native membrane vesicles using an in vitro translocation assay. Furthermore, when reconstituted in model membranes with negative spontaneous curvature, the TMH was found to be aligned parallel to the membrane surface. This intrinsic ability of TatA to flip out of the membrane core thus seems to play a key role in its membrane-destabilizing effect during Tat-dependent translocation.


Subject(s)
Escherichia coli Proteins , Membrane Transport Proteins , Membrane Transport Proteins/chemistry , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Escherichia coli Proteins/metabolism
6.
Chembiochem ; 24(4): e202200602, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36454659

ABSTRACT

BP100 is a cationic undecamer peptide with antimicrobial and cell-penetrating activities. The orientation of this amphiphilic α-helix in lipid bilayers was examined under numerous conditions using solid-state 19 F, 15 N and 2 H NMR. At high temperatures in saturated phosphatidylcholine lipids, BP100 lies flat on the membrane surface, as expected. Upon lowering the temperature towards the lipid phase transition, the helix is found to flip into an upright transmembrane orientation. In thin bilayers, this inserted state was stable at low peptide concentration, but thicker membranes required higher peptide concentrations. In the presence of lysolipids, the inserted state prevailed even at high temperature. Molecular dynamics simulations suggest that BP100 monomer insertion can be stabilized by snorkeling lysine side chains. These results demonstrate that even a very short helix like BP100 can span (and thereby penetrate through) a cellular membrane under suitable conditions.


Subject(s)
Molecular Dynamics Simulation , Peptides , Temperature , Peptides/chemistry , Cell Membrane/chemistry , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy
7.
Small ; 18(41): e2107308, 2022 10.
Article in English | MEDLINE | ID: mdl-36074982

ABSTRACT

A labeling strategy for in vivo 19 F-MRI (magnetic resonance imaging) based on highly fluorinated, short hydrophilic peptide probes, is developed. As dual-purpose probes, they are functionalized further by a fluorophore and an alkyne moiety for bioconjugation. High fluorination is achieved by three perfluoro-tert-butyl groups, introduced into asparagine analogues by chemically stable amide bond linkages. d-amino acids and ß-alanine in the sequences endow the peptide probes with low cytotoxicity and high serum stability. This design also yielded unstructured peptides, rendering all 27 19 F substitutions chemically equivalent, giving rise to a single 19 F-NMR resonance with <10 Hz linewidth. The resulting performance in 19 F-MRI is demonstrated for six different peptide probes. Using fluorescence microscopy, these probes are found to exhibit high stability and long circulation times in living zebrafish embryos. Furthermore, the probes can be conjugated to bovine serum albumin with only amoderate increase in 19 F-NMR linewidth to ≈30 Hz. Overall, these peptide probes are hence suitable for in vivo 19 F-MRI applications.


Subject(s)
Asparagine , Serum Albumin, Bovine , Alkynes , Amides , Amino Acids/chemistry , Animals , Magnetic Resonance Imaging , Peptides/chemistry , Zebrafish , beta-Alanine
8.
Biomedicines ; 10(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36140173

ABSTRACT

Amphipathic peptides can act as antibiotics due to membrane permeabilization. KL peptides with the repetitive sequence [Lys-Leu]n-NH2 form amphipathic ß-strands in the presence of lipid bilayers. As they are known to kill bacteria in a peculiar length-dependent manner, we suggest here several different functional models, all of which seem plausible, including a carpet mechanism, a ß-barrel pore, a toroidal wormhole, and a ß-helix. To resolve their genuine mechanism, the activity of KL peptides with lengths from 6-26 amino acids (plus some inverted LK analogues) was systematically tested against bacteria and erythrocytes. Vesicle leakage assays served to correlate bilayer thickness and peptide length and to examine the role of membrane curvature and putative pore diameter. KL peptides with 10-12 amino acids showed the best therapeutic potential, i.e., high antimicrobial activity and low hemolytic side effects. Mechanistically, this particular window of an optimum ß-strand length around 4 nm (11 amino acids × 3.7 Å) would match the typical thickness of a lipid bilayer, implying the formation of a transmembrane pore. Solid-state 15N- and 19F-NMR structure analysis, however, showed that the KL backbone lies flat on the membrane surface under all conditions. We can thus refute any of the pore models and conclude that the KL peptides rather disrupt membranes by a carpet mechanism. The intriguing length-dependent optimum in activity can be fully explained by two counteracting effects, i.e., membrane binding versus amyloid formation. Very short KL peptides are inactive, because they are unable to bind to the lipid bilayer as flexible ß-strands, whereas very long peptides are inactive due to vigorous pre-aggregation into ß-sheets in solution.

9.
J Photochem Photobiol B ; 233: 112479, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35660309

ABSTRACT

An in vivo study of a photoswitchable cytotoxic peptide LMB040 has been undertaken on a chemically induced hepatocellular carcinoma model in immunocompetent rats. We analysed the pharmacokinetic profile of the less toxic photoform ("ring-closed" dithienylethene) of the compound in tumors, plasma, and healthy liver. Accordingly, the peptide can reach a tumor concentration sufficiently high to exert a cytotoxic effect upon photoconversion into the more active ("ring-open") photoform. Tissue morphology, histology, redox state of the liver, and hepatic biochemical parameters in blood serum were analysed upon treatment with (i) the less active photoform, (ii) the in vivo light-activated alternative photoform, and (iii) compared with a reference chemotherapeutic 5-fluorouracil. We found that application of the less toxic form followed by a delayed in vivo photoconversion into the more toxic ring-open form of LMB040 led to a higher overall survival of the animals, and signs of enhanced immune response were observed compared to the untreated animals.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Fluorouracil/therapeutic use , Peptides , Rats
10.
Int J Mol Sci ; 23(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35562938

ABSTRACT

The lateral pressure profile constitutes an important physical property of lipid bilayers, influencing the binding, insertion, and function of membrane-active peptides, such as antimicrobial peptides. In this study, we demonstrate that the lateral pressure profile can be manipulated using the peptides residing in different regions of the bilayer. A 19F-labeled analogue of the amphiphilic peptide PGLa was used to probe the lateral pressure at different depths in the membrane. To evaluate the lateral pressure profile, we measured the orientation of this helical peptide with respect to the membrane using solid-state 19F-NMR, which is indicative of its degree of insertion into the bilayer. Using this experimental approach, we observed that the depth of insertion of the probe peptide changed in the presence of additional peptides and, furthermore, correlated with their location in the membrane. In this way, we obtained a tool to manipulate, as well as to probe, the lateral pressure profile in membranes.


Subject(s)
Lipid Bilayers , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy/methods
11.
Phys Chem Chem Phys ; 23(47): 26931-26939, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34825904

ABSTRACT

Circular dichroism is a conventional method for studying the secondary structures of peptides and proteins and their transitions. While certain circular dichroism features are characteristic of α-helices and ß-strands, the third most abundant secondary structure, the polyproline-II helix, does not exhibit a strictly conserved spectroscopic appearance. Due to its extended nature, the polyproline-II helix is highly accessible to the surrounding solvent; thus, the environment has a critical influence on the lineshape of the circular dichroism spectra of this structure. To showcase possible effects due to the medium, in this work, we report an experimental spectroscopic study of polyproline-II-forming oligomeric peptides in various environments: solvents, detergent micelles, and liposomes. Strikingly, the examination of an oligomeric peptide in a solvent series showed a remarkable 7 nm solvatochromic shift in the main negative band starting with hexafluoropropan-2-ol and moving to hexane. Furthermore, a previously predicted positive band below 200 nm was discovered in the spectra in nonpolar environments. In isotropic liposomes, the expected transition to the transmembrane state correlated with the appearance of a positive band at 228 nm. Our results demonstrate that changes in solvation should be taken into consideration when assessing the circular dichroism spectra of peptides expected to adopt the polyproline-II conformation. Although this precaution may complicate spectral analysis, characterization of solvent-induced spectral changes can generate new opportunities for testing the location of peptides in complex systems such as micelles or lipid bilayers.


Subject(s)
Peptides/chemistry , Alanine/chemistry , Circular Dichroism , Protein Conformation
12.
Int J Mol Sci ; 22(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34576320

ABSTRACT

A group of seven peptides from spider venom with diverse sequences constitute the latarcin family. They have been described as membrane-active antibiotics, but their lipid interactions have not yet been addressed. Using circular dichroism and solid-state 15N-NMR, we systematically characterized and compared the conformation and helix alignment of all seven peptides in their membrane-bound state. These structural results could be correlated with activity assays (antimicrobial, hemolysis, fluorescence vesicle leakage). Functional synergy was not observed amongst any of the latarcins. In the presence of lipids, all peptides fold into amphiphilic α-helices as expected, the helices being either surface-bound or tilted in the bilayer. The most tilted peptide, Ltc2a, possesses a novel kind of amphiphilic profile with a coiled-coil-like hydrophobic strip and is the most aggressive of all. It indiscriminately permeabilizes natural membranes (antimicrobial, hemolysis) as well as artificial lipid bilayers through the segregation of anionic lipids and possibly enhanced motional averaging. Ltc1, Ltc3a, Ltc4a, and Ltc5a are efficient and selective in killing bacteria but without causing significant bilayer disturbance. They act rather slowly or may even translocate towards intracellular targets, suggesting more subtle lipid interactions. Ltc6a and Ltc7, finally, do not show much antimicrobial action but can nonetheless perturb model bilayers.


Subject(s)
Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/metabolism , Spider Venoms/chemistry , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/chemistry , Cell Membrane/metabolism , Circular Dichroism , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy
13.
Mol Pharmacol ; 100(5): 502-512, 2021 11.
Article in English | MEDLINE | ID: mdl-34475108

ABSTRACT

The activity of local anesthetics (LAs) has been attributed to the inhibition of ion channels, causing anesthesia. However, there is a growing body of research showing that LAs act on a wide range of receptors and channel proteins far beyond simple analgesia. The current concept of ligand recognition may no longer explain the multitude of protein targets influenced by LAs. We hypothesize that LAs can cause anesthesia without directly binding to the receptor proteins just by changing the physical properties of the lipid bilayer surrounding these proteins and ion channels based on LAs' amphiphilicity. It is possible that LAs act in one of the following ways: They 1) dissolve raft-like membrane microdomains, 2) impede nerve impulse propagation by lowering the lipid phase transition temperature, or 3) modulate the lateral pressure profile of the lipid bilayer. This could also explain the numerous additional effects of LAs besides anesthesia. Furthermore, the concepts of membrane-mediated activity and binding to ion channels do not have to exclude each other. If we were to consider LA as the middle part of a continuum between unspecific membrane-mediated activity on one end and highly specific ligand binding on the other end, we could describe LA as the link between the unspecific action of general anesthetics and toxins with their highly specific receptor binding. This comprehensive membrane-mediated model offers a fresh perspective to clinical and pharmaceutical research and therapeutic applications of local anesthetics. SIGNIFICANCE STATEMENT: Local anesthetics, according to the World Health Organization, belong to the most important drugs available to mankind. Their rediscovery as therapeutics and not only anesthetics marks a milestone in global pain therapy. The membrane-mediated mechanism of action proposed in this review can explain their puzzling variety of target proteins and their thus far inexplicable therapeutic effects. The new concept presented here places LAs on a continuum of structures and molecular mechanisms in between small general anesthetics and the more complex molecular toxins.


Subject(s)
Action Potentials/physiology , Anesthetics, Local/metabolism , Cell Physiological Phenomena/physiology , Membrane Microdomains/metabolism , Action Potentials/drug effects , Anesthetics, Local/administration & dosage , Anesthetics, Local/chemistry , Animals , Binding Sites/drug effects , Binding Sites/physiology , Cell Physiological Phenomena/drug effects , Humans , Ion Channels/antagonists & inhibitors , Ion Channels/metabolism , Lipid Bilayers/metabolism , Membrane Microdomains/drug effects , Protein Structure, Secondary
14.
Sci Adv ; 7(27)2021 06.
Article in English | MEDLINE | ID: mdl-34193419

ABSTRACT

Because of its small size (70 kilodalton) and large content of structural disorder (>50%), the human growth hormone receptor (hGHR) falls between the cracks of conventional high-resolution structural biology methods. Here, we study the structure of the full-length hGHR in nanodiscs with small-angle x-ray scattering (SAXS) as the foundation. We develop an approach that combines SAXS, x-ray diffraction, and NMR spectroscopy data obtained on individual domains and integrate these through molecular dynamics simulations to interpret SAXS data on the full-length hGHR in nanodiscs. The hGHR domains reorient freely, resulting in a broad structural ensemble, emphasizing the need to take an ensemble view on signaling of relevance to disease states. The structure provides the first experimental model of any full-length cytokine receptor in a lipid membrane and exemplifies how integrating experimental data from several techniques computationally may access structures of membrane proteins with long, disordered regions, a widespread phenomenon in biology.


Subject(s)
Membrane Proteins , Molecular Dynamics Simulation , Humans , Membrane Proteins/chemistry , Protein Conformation , Scattering, Small Angle , X-Ray Diffraction
15.
Front Chem ; 9: 688446, 2021.
Article in English | MEDLINE | ID: mdl-34262894

ABSTRACT

Labeling biomolecules with fluorescent labels is an established tool for structural, biochemical, and biophysical studies; however, it remains underused for small peptides. In this work, an amino acid bearing a 3-hydroxychromone fluorophore, 2-amino-3-(2-(furan-2-yl)-3-hydroxy-4-oxo-4H-chromen-6-yl)propanoic acid (FHC), was incorporated in a known hexameric antimicrobial peptide, cyclo[RRRWFW] (cWFW), in place of aromatic residues. Circular dichroism spectropolarimetry and antibacterial activity measurements demonstrated that the FHC residue perturbs the peptide structure depending on labeling position but does not modify the activity of cWFW significantly. FHC thus can be considered an adequate label for studies of the parent peptide. Several analytical and imaging techniques were used to establish the activity of the obtained labeled cWFW analogues toward animal cells and to study the behavior of the peptides in a multicellular organism. The 3-hydroxychromone fluorophore can undergo excited-state intramolecular proton transfer (ESIPT), resulting in double-band emission from its two tautomeric forms. This feature allowed us to get insights into conformational equilibria of the labeled peptides, localize the cWFW analogues in human cells (HeLa and HEK293) and zebrafish embryos, and assess the polarity of the local environment around the label by confocal fluorescence microscopy. We found that the labeled peptides efficiently penetrated cancerous cells and localized mainly in lipid-containing and/or other nonpolar subcellular compartments. In the zebrafish embryo, the peptides remained in the bloodstream upon injection into the cardinal vein, presumably adhering to lipoproteins and/or microvesicles. They did not diffuse into any tissue to a significant extent during the first 3 h after administration. This study demonstrated the utility of fluorescent labeling by double-emission labels to evaluate biologically active peptides as potential drug candidates in vivo.

16.
Angew Chem Int Ed Engl ; 60(40): 21789-21794, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34268844

ABSTRACT

A bicyclic peptide scaffold was chemically adapted to generate diarylethene-based photoswitchable inhibitors of serine protease Bos taurus trypsin 1 (T1). Starting from a prototype molecule-sunflower trypsin inhibitor-1 (SFTI-1)-we obtained light-controllable inhibitors of T1 with Ki in the low nanomolar range, whose activity could be modulated over 20-fold by irradiation. The inhibitory potency as well as resistance to proteolytic degradation were systematically studied on a series of 17 SFTI-1 analogues. The hydrogen bond network that stabilizes the structure of inhibitors and possibly the enzyme-inhibitor binding dynamics were affected by isomerization of the photoswitch. The feasibility of manipulating enzyme activity in time and space was demonstrated by controlled digestion of gelatin-based hydrogel and an antimicrobial peptide BP100-RW. Finally, our design principles of diarylethene photoswitches are shown to apply also for the development of other serine protease inhibitors.


Subject(s)
Ethylenes/pharmacology , Peptides, Cyclic/pharmacology , Serine Proteases/metabolism , Serine Proteinase Inhibitors/pharmacology , Animals , Cattle , Ethylenes/chemistry , Molecular Structure , Peptides, Cyclic/chemistry , Serine Proteinase Inhibitors/chemistry
17.
Chemistry ; 27(61): 15171-15179, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34165834

ABSTRACT

Chiral magnetic materials are proposed for applications in second-order non-linear optics, magneto-chiral dichroism, among others. Recently, we have reported a set of tetra-nuclear Fe(II) grid complex conformers with general formula C/S-[Fe4 L4 ]8+ (L: 2,6-bis(6-(pyrazol-1-yl)pyridin-2-yl)-1,5-dihydrobenzo[1,2-d : 4,5-d']diimidazole). In the grid complexes, isomerism emerges from tautomerism and conformational isomerism of the ligand L, and the S-type grid complex is chiral, which originates from different non-centrosymmetric spatial organization of the trans type ligand around the Fe(II) center. However, the selective preparation of an enantiomerically pure grid complex in a controlled manner is difficult due to spontaneous self-assembly. To achieve the pre-synthesis programmable resolution of Fe(II) grid complexes, we designed and synthesized two novel intrinsically chiral ligands by appending chiral moieties to the parent ligand. The complexation of these chiral ligands with Fe(II) salt resulted in the formation of enantiomerically pure Fe(II) grid complexes, as unambiguously elucidated by CD and XRD studies. The enantiomeric complexes exhibited similar gradual and half-complete thermal and photo-induced SCO characteristics. The good agreement between the experimentally obtained and calculated CD spectra further supports the enantiomeric purity of the complexes and even the magnetic studies. The chiral resolution of Fe(II)- [2×2] grid complexes reported in this study, for the first time, might enable the fabrication of magneto-chiral molecular devices.

18.
Front Cell Infect Microbiol ; 11: 609542, 2021.
Article in English | MEDLINE | ID: mdl-33981626

ABSTRACT

BP100 is a short, designer-made membrane-active peptide with multiple functionalities: antimicrobial, cell-penetrating, and fusogenic. Consisting of five lysines and 6 hydrophobic residues, BP100 was shown to bind to lipid bilayers as an amphipathic α-helix, but its mechanism of action remains unclear. With these features, BP100 embodies the characteristics of two distinctly different classes of membrane-active peptides, which have been studied in detail and where the mechanism of action is better understood. On the one hand, its amphiphilic helical structure is similar to the pore forming magainin family of antimicrobial peptides, though BP100 is much too short to span the membrane. On the other hand, its length and high charge density are reminiscent of the HIV-TAT family of cell penetrating peptides, for which inverted micelles have been postulated as translocation intermediates, amongst other mechanisms. Assays were performed to test the antimicrobial and hemolytic activity, the induced leakage and fusion of lipid vesicles, and cell uptake. From these results the functional profiles of BP100, HIV-TAT, and the magainin-like peptides magainin 2, PGLa, MSI-103, and MAP were determined and compared. It is observed that the activity of BP100 resembles most closely the much longer amphipathic α-helical magainin-like peptides, with high antimicrobial activity along with considerable fusogenic and hemolytic effects. In contrast, HIV-TAT shows almost no antimicrobial, fusogenic, or hemolytic effects. We conclude that the amphipathic helix of BP100 has a similar membrane-based activity as magainin-like peptides and may have a similar mechanism of action.


Subject(s)
Anti-Infective Agents , Lipid Bilayers , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Magainins , Protein Conformation, alpha-Helical
19.
Front Med Technol ; 3: 622096, 2021.
Article in English | MEDLINE | ID: mdl-35047904

ABSTRACT

Cationic membrane-active peptides are considered to be promising candidates for antibiotic treatment. Many natural and artificial sequences show an antimicrobial activity when they are able to take on an amphipathic fold upon membrane binding, which in turn perturbs the integrity of the lipid bilayer. Most known structures are α-helices and ß-hairpins, but also cyclic knots and other irregular conformations are known. Linear ß-stranded antimicrobial peptides are not so common in nature, but numerous model sequences have been designed. Interestingly, many of them tend to be highly membranolytic, but also have a significant tendency to self-assemble into ß-sheets by hydrogen-bonding. In this minireview we examine the literature on such amphipathic peptides consisting of simple repetitive sequences of alternating cationic and hydrophobic residues, and discuss their advantages and disadvantages. Their interactions with lipids have been characterized with a number of biophysical techniques-especially circular dichroism, fluorescence, and infrared-in order to determine their secondary structure, membrane binding, aggregation tendency, and ability to permeabilize vesicles. Their activities against bacteria, biofilms, erythrocytes, and human cells have also been studied using biological assays. In line with the main scope of this Special Issue, we attempt to correlate the biophysical results with the biological data, and in particular we discuss which properties (length, charge, aggregation tendency, etc.) of these simple model peptides are most relevant for their biological function. The overview presented here offers ideas for future experiments, and also suggests a few design rules for promising ß-stranded peptides to develop efficient antimicrobial agents.

20.
Proc Natl Acad Sci U S A ; 117(47): 29637-29646, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33154156

ABSTRACT

Pinholin S2168 triggers the lytic cycle of bacteriophage φ21 in infected Escherichia coli Activated transmembrane dimers oligomerize into small holes and uncouple the proton gradient. Transmembrane domain 1 (TMD1) regulates this activity, while TMD2 is postulated to form the actual "pinholes." Focusing on the TMD2 fragment, we used synchrotron radiation-based circular dichroism to confirm its α-helical conformation and transmembrane alignment. Solid-state 15N-NMR in oriented DMPC bilayers yielded a helix tilt angle of τ = 14°, a high order parameter (Smol = 0.9), and revealed the azimuthal angle. The resulting rotational orientation places an extended glycine zipper motif (G40xxxS44xxxG48) together with a patch of H-bonding residues (T51, T54, N55) sideways along TMD2, available for helix-helix interactions. Using fluorescence vesicle leakage assays, we demonstrate that TMD2 forms stable holes with an estimated diameter of 2 nm, as long as the glycine zipper motif remains intact. Based on our experimental data, we suggest structural models for the oligomeric pinhole (right-handed heptameric TMD2 bundle), for the active dimer (right-handed Gly-zipped TMD2/TMD2 dimer), and for the full-length pinholin protein before being triggered (Gly-zipped TMD2/TMD1-TMD1/TMD2 dimer in a line).


Subject(s)
Bacteriophages/metabolism , Viral Proteins/metabolism , Circular Dichroism , DNA/metabolism , Escherichia coli/virology , Glycine/metabolism , Lipid Bilayers/metabolism , Magnetic Resonance Spectroscopy/methods , Membrane Proteins/metabolism , Protein Conformation, alpha-Helical/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...