Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38607062

ABSTRACT

Limbal epithelial progenitor cells (LEPC) rely on their niche environment for proper functionality and self-renewal. While extracellular vesicles (EV), specifically small EVs (sEV), have been proposed to support LEPC homeostasis, data on sEV derived from limbal niche cells like limbal mesenchymal stromal cells (LMSC) remain limited, and there are no studies on sEVs from limbal melanocytes (LM). In this study, we isolated sEV from conditioned media of LMSC and LM using a combination of tangential flow filtration and size exclusion chromatography and characterized them by nanoparticle tracking analysis, transmission electron microscopy, Western blot, multiplex bead arrays, and quantitative mass spectrometry. The internalization of sEV by LEPC was studied using flow cytometry and confocal microscopy. The isolated sEVs exhibited typical EV characteristics, including cell-specific markers such as CD90 for LMSC-sEV and Melan-A for LM-sEV. Bioinformatics analysis of the proteomic data suggested a significant role of sEVs in extracellular matrix deposition, with LMSC-derived sEV containing proteins involved in collagen remodeling and cell matrix adhesion, whereas LM-sEV proteins were implicated in other cellular bioprocesses such as cellular pigmentation and development. Moreover, fluorescently labeled LMSC-sEV and LM-sEV were taken up by LEPC and localized to their perinuclear compartment. These findings provide valuable insights into the complex role of sEV from niche cells in regulating the human limbal stem cell niche.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Proteomics/methods , Mesenchymal Stem Cells/metabolism , Stem Cells , Melanocytes , Extracellular Vesicles/metabolism
2.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069177

ABSTRACT

Organ culture storage techniques for corneoscleral limbal (CSL) tissue have improved the quality of corneas for transplantation and allow for longer storage times. Cultured limbal tissue has been used for stem cell transplantation to treat limbal stem cell deficiency (LSCD) as well as for research purposes to assess homeostasis mechanisms in the limbal stem cell niche. However, the effects of organ culture storage conditions on the quality of limbal niche components are less well described. Therefore, in this study, the morphological and immunohistochemical characteristics of organ-cultured limbal tissue are investigated and compared to fresh limbal tissues by means of light and electron microscopy. Organ-cultured limbal tissues showed signs of deterioration, such as edema, less pronounced basement membranes, and loss of the most superficial layers of the epithelium. In comparison to the fresh limbal epithelium, organ-cultured limbal epithelium showed signs of ongoing proliferative activity (more Ki-67+ cells) and exhibited an altered limbal epithelial phenotype with a loss of N-cadherin and desmoglein expression as well as a lack of precise staining patterns for cytokeratin ((CK)14, CK17/19, CK15). The analyzed extracellular matrix composition was mainly intact (collagen IV, fibronectin, laminin chains) except for Tenascin-C, whose expression was increased in organ-cultured limbal tissue. Nonetheless, the expression patterns of cell-matrix adhesion proteins varied in organ-cultured limbal tissue compared to fresh limbal tissue. A decrease in the number of melanocytes (Melan-A+ cells) and Langerhans cells (HLA-DR+, CD1a+, CD18+) was observed in the organ-cultured limbal tissue. The organ culture-induced alterations of the limbal epithelial stem cell niche might hamper its use in the treatment of LSCD as well as in research studies. In contrast, reduced numbers of donor-derived Langerhans cells seem associated with better clinical outcomes. However, there is a need to consider the preferential use of fresh CSL for limbal transplants and to look at ways of improving the limbal stem cell properties of stored CSL tissue.


Subject(s)
Epithelium, Corneal , Humans , Organ Culture Techniques , Epithelium, Corneal/metabolism , Stem Cells/metabolism , Stem Cell Niche , Limbal Stem Cells , Epithelial Cells , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...