Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 945: 173629, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821280

ABSTRACT

Pesticides are detected in surface water and groundwater, endangering the environment. In lowland regions with subsurface drainage systems, drained depressions become hotspots for transport of pesticides and their transformation products (TPs). This study focuses on detailed modelling of the degradation and transport of pesticides with different physico-chemical properties. The objective is to analyse complex hydrological transport processes, to understand the temporal and spatial dynamics of the degradation and transport of pesticides. The ecohydrological model SWAT+ simulates hydrological processes as well as agricultural management and pesticide degradation, and can therefore be used to develop pesticide loss reduction strategies. This study focuses on modelling of three pesticides (pendimethalin, diflufenican, and flufenacet), and two TPs, flufenacet-oxalic acid (FOA) and flufenacet sulfonic acid (FESA). The study area is a 100-hectare farmland in the northern German lowlands of Schleswig-Holstein that is characterized by an spacious drainage network of 6.3 km and managed according to common conventional agricultural practice. SWAT+ modelled streamflow with very good agreement between observed and simulated data during calibration and validation. Regarding pesticides, the model performance for highly mobile substances is better than for non-mobile pesticides. While the transport of the moderately to very mobile substances via tile drains played an important role in both wet and dry conditions, no transport via tile drains was modelled for the highly sorptive and non-mobile pendimethalin. In conclusion, the model can reliably represent the degradation of moderately to very mobile pesticides in small-scale tile drainage-dominated catchments, as well as surface runoff-induced peak loads. However, it has weaknesses in accounting for the subsurface transport of non-mobile substances, which can lead to an underestimation of the subsequent delivery after precipitation events and thus underestimates the total load.

2.
Environ Microbiol ; 25(12): 2972-2987, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37994199

ABSTRACT

Herbicides are important, ubiquitous environmental contaminants, but little is known about their interaction with bacterial aquatic communities. Here, we sampled a protected natural freshwater habitat and characterised its microbiome in interaction with herbicides. We evolved the freshwater microbiomes in a microcosm assay of exposure (28 days) to flufenacet and metazachlor at environmental concentrations of 0.5, 5 and 50 µg L-1 . Inhibitory effects of herbicides were exemplarily assessed in cultured bacteria from the same pond (Pseudomonas alcaligenes, Paenibacillus amylolyticus and Microbacterium hominis). Findings were compared to long-term concentrations as provided by local authorities. Here, environmental concentrations reached up to 11 µg L-1 (flufenacet) and 76 µg L-1 (metazachlor). Bacteria were inhibited at minimum inhibitory concentrations far above these values; however, concentrations of 50 µg L-1 of flufenacet resulted in measurable growth impairment. While most herbicide-exposed microcosm assays did not differ from controls, Acidobacteria were selected at high environmental concentrations of herbicides. Alpha-diversity (e.g., taxonomic richness on phylum level) was reduced when aquatic microbiomes were exposed to 50 µg metazachlor or flufenacet. One environmental strain of P. alcaligenes showed resistance to high concentrations of flufenacet (50 g L-1 ). In total, this study reveals that ecologic imbalance due to herbicide use significantly impacts aquatic microbiomes.


Subject(s)
Herbicides , Herbicides/pharmacology , Herbicides/analysis , Acetamides/toxicity , Ecosystem
3.
Sci Total Environ ; 836: 155405, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35469862

ABSTRACT

Drainage ponds have the potential to serve as long-term interface measures primarily for flood control, and mass retention. They are often considered as promising supplements for the mitigation of drainage pipe loads to improve the water quality in agricultural landscapes. In this study, a highly dynamic drainage pond system with non-steady inflows and groundwater interaction was modified and investigated regarding its potential for pesticide and transformation product (TP) retention. For this purpose, two 104-day monitoring campaigns were conducted before and after pond modification. Field experiments with fluorescent tracers, Uranine and Sulforhodamine-B, proved that structural modifications improved the hydraulic functionality of the ponds. The effective volume (Ɛ) increased from 20% to almost 100% in the modified pond and the mean hydraulic residence time (τ) was ten times longer. After a dry period, pesticide retention was high during slow refilling of the ponds, still TP loads posed a risk by infiltration into shallow groundwater due to the permeable ground. During wet periods, short nominal detention times together with high inflows led to rare high retention rates through peak attenuation. Moderate inflows resulted in extremely variable retention values, owing to the small pond storage capacity. Along with this, the total retention efficiency after modification reached up to 38% for mobile, 29% for sorptive pesticides, and 32% for mobile TPs. To achieve the best performances for ponds as natural landscape elements, they should be analysed for their hydrological functionality as a prerequisite and then modified for delayed pesticide and TP transport. Then, dynamic drainage ponds can utilize their full potential regarding mitigation of pesticide and TP loads in agricultural catchments.


Subject(s)
Groundwater , Pesticides , Water Pollutants, Chemical , Agriculture , Pesticides/analysis , Ponds , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 816: 151504, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34785230

ABSTRACT

Lentic small water bodies (LSWB) are a highly valuable landscape element with important ecosystem services and benefits for humans and the environment. However, data about their pesticide contamination dynamic and the associated ecotoxicological effects are scarce. To overcome these knowledge gaps, five LSWBs located in agricultural fields in Northern Germany were studied during the spring pesticide application period (April to July 2018) and the concentrations of 94 pesticides were measured in weekly intervals. The goals of this study were to observe the trends of pesticide contamination during the application period, assess the ecotoxicity of the contamination, and assign the findings to temporal and spatial origins. Samples contained pesticide concentrations between 0.12 and 4.83 µg L-1 as sums. High detection frequencies (81% of samples) and concentrations (max 1.2 µg L-1) were observed for metazachlor transformation products. Contamination from multiple pesticides was detected with up to 25 compounds per sample and a maximum of 37 compounds per LSWB during the entire sampling period. High toxicities for algae and macrophytes were recorded using toxic units (TU) of -0.2 to -3.5. TUs for invertebrates were generally lower than for algae/macrophytes (-2.7 to -5.2) but were also recorded at levels with ecological impacts. Pesticide detections were separated into four categories to assign them to different temporal and spatial origins. Pesticides from the spring (5-11%) and the previous autumn (0-36%) application periods were detected in the LSWB. Some pesticides could be related to the application of the previous crop on the same field (0-39%), but most of the compounds (44-85%) were not related to the crop management in the last two years on the respective LSWB fields. The relevance of different input pathways is still unknown. Particularly, the effect of long-distance transport needs to be clarified to protect aquatic biota in LSWBs.


Subject(s)
Pesticides , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Humans , Invertebrates , Pesticides/analysis , Pesticides/toxicity , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
5.
Ecotoxicol Environ Saf ; 228: 113036, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34861440

ABSTRACT

Agrochemicals are the main pollutants in freshwater ecosystems. Metazachlor and flufenacet are two common herbicides applied in fall (i.e., August-October) to agricultural fields in Northern Germany. High concentrations of these herbicides are often found in adjacent aquatic ecosystems. Phytoplankton are one of the highly susceptible non-targeted aquatic organismal groups for herbicides and effects on phytoplankton may initiate a chain of consequences in meta communities through trophic interactions. Few studies have focused on responses of the phytoplankton community for metazachlor and, no studies have focused on flufenacet. We studied the effects of metazachlor and flufenacet on the phytoplankton community by conducting a microcosm experiment exposing natural fall phytoplankton communities to environmentally realistic concentrations as 0 (control), 0.5, 5 and 50 µg L-1 of metazachlor and flufenacet treatments over a 4-week period. We measured changes in density, composition (i.e., in phyla and species level), taxonomic diversity indices, and functional features of phytoplankton communities as a response to herbicides. A reduction in the density of Chlorophyta species (e.g., Koliella longiseta, Selenastrum bibraianum) and Cyanobacteria species (e.g., Merismopedia tenuissima and Aphanocapsa elegans) was observed in herbicide treatments compared to controls. The phytoplankton community shifted towards a high density of species from Bacillariophyta (e.g., Nitzschia fonticola and Cyclotella meneghiniana), Miozoa (i.e., Peridinium willei), and Euglenozoa (i.e., Trachelomonas volvocina) in herbicide treatments compared to controls. Metazachlor and flufenacet showed significant negative effects on taxonomic diversity indices (e.g., species richness, the Shannon-Wiener index) and functional features (e.g., functional dispersion and redundancy) of the phytoplankton communities, with increasing herbicide concentrations. Our study provides insights into direct, selective, and irrecoverable effects of metazachlor and flufenacet on phytoplankton communities in the short-term. The comprehensive understanding of these effects of environmentally realistic herbicide concentrations on aquatic biota is essential for a sustainable management of aquatic ecosystems in agricultural areas.

6.
Environ Sci Pollut Res Int ; 28(32): 44183-44199, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33847885

ABSTRACT

The research of the environmental fate of pesticides has demonstrated that applied compounds are altered in their molecular structure over time and are distributed within the environment. To assess the risk for contamination by transformation products (TP) of the herbicides flufenacet and metazachlor, the following four water body types were sampled in a small-scale catchment of 50 km2 in 2015/2016: tile drainage water, stream water, shallow groundwater, and drinking water of private wells. The TP were omnipresent in every type of water body, more frequently and in concentrations up to 10 times higher than their parent compounds. Especially metazachlor sulfonic acid, metazachlor oxalic acid, and flufenacet oxalic acid were detected in almost every drainage and stream sample. The transformation process leads to more mobile and more persistent molecules resulting in higher detection frequencies and concentrations, which can even occur a year or more after the application of the parent compound. The vulnerability of shallow groundwater and private drinking water wells to leaching compounds is proved by numerous positives of metazachlor-TP with maximum concentrations of 0.7 µg L-1 (drinking water) and 20 µg L-1 (shallow groundwater) of metazachlor sulfonic acid. Rainfall events during the application period cause high discharge of the parent compound and lower release of TP. Later rainfall events lead to high displacement of TP. For an integrated risk assessment of water bodies, the environmental behavior of pesticide-TP has to be included into regular state-of-the-art water quality monitoring.


Subject(s)
Groundwater , Herbicides , Water Pollutants, Chemical , Environmental Monitoring , Herbicides/analysis , Somatotypes , Water , Water Pollutants, Chemical/analysis
7.
Sci Total Environ ; 780: 146481, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33774292

ABSTRACT

Agrochemicals such as pesticides and nutrients are concurrent chemical stressors in freshwater aquatic ecosystems surrounded by agricultural areas. Lentic small water bodies (LSWB) are ecologically significant habitats especially for maintaining biodiversity but highly understudied. Phytoplankton are ideal indicator species for stress responses. Functional features of the phytoplankton are important in revealing the processes that determine the structure of the communities. In this study, we investigated the effects of pesticides, nutrients, and local environmental variables on the species composition and functional features of phytoplankton communities in LSWB. We studied pesticide toxicity of ninety-four pesticides, three nutrients (NH4-N, NO3-N and PO4-P) and local environment variables (precipitation, water level change, temperature, dissolved oxygen concentration, electrical conductivity, pH) in five LSWB over twelve weeks during the spring pesticide application period. We explored respective changes in species composition of phytoplankton community and functional features. Redundancy analysis and variance partitioning analysis were applied to correlate phytoplankton community compositions with the pesticide toxicity (as maximum toxicity in toxic units), nutrients and local environment variables. We used multiple linear regression models to identify the main environmental variables driving the functional features of phytoplankton communities. Pesticide toxicity, nutrients and local environmental variables significantly (p < 0.001) contributed to shaping phytoplankton community composition individually. Local environment variables showed the highest pure contribution for driving phytoplankton composition (12%), followed by nutrients (8%) and pesticide toxicity (2%). Functional features (represented by functional diversity and functional redundancy) of the phytoplankton community were significantly affected by pesticide toxicity and nutrients concentrations. The functional richness and functional evenness were negatively affected by PO4-P concentrations. Pesticide toxicity was positively correlated with functional redundancy indices. Our findings emphasized the relative importance of concurrent multiple stressors (e.g., pesticides and nutrients) on phytoplankton community structure, directing potential effects on metacommunity structures in aquatic ecosystems subjected to agricultural runoff.


Subject(s)
Pesticides , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Nutrients , Pesticides/analysis , Pesticides/toxicity , Phytoplankton , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
8.
Sci Total Environ ; 751: 141658, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32871316

ABSTRACT

The frequent detection of residues from pesticides in various natural water types has raised public awareness. This study investigated the pesticide transformation in soil and their loss to shallow groundwater in a small agricultural catchment in Northern Germany. The pesticide Flufenacet and its transformation product Flufenacet ESA were examined in Luvisol and Colluvic Gleyosol under field conditions during two consecutive years. In the second year, a fluorescent tracer experiment applying Uranine and Sulforhodamine - B was carried out to gain additional insights into leaching and formation of transformation products in soil during and after a drought. We found preferential flow in response to low precipitation as an important transport pathway for Flufenacet in dry soil, as a Flufenacet concentration (1.57 µg L-1) was detected in shallow groundwater within 10 days after application. Leaching of Flufenacet to shallow groundwater by preferential flow posed greater risks during the dry than during the wet period. In contrast, Flufenacet ESA was detected in all groundwater samples. During the dry period, we detected no formation of TP510 (tracer transformation product) in the immediate topsoil. A fraction of both tracers remained there, suggesting also long-term residues of pesticides in the topsoil caused by limited living conditions for microorganisms under dry conditions. Newly formed transformation products of Uranine and Flufenacet were mainly trapped in upper soil if capillary flow was marginal. Formation of TP510 could be related to a soil water optimum and a soil temperature threshold. The occurrence of increased TP510 amounts in soil after drought was concurrent with the main peak of Flufenacet ESA in shallow groundwater. This suggested similar retention and transformation processes of fluorescent tracers and organic pesticides inside the soil. This study contributed to an extended understanding of the leaching and transformation of organic pollutants in agricultural soil under real field conditions.

9.
Environ Sci Pollut Res Int ; 26(26): 26706-26720, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31297708

ABSTRACT

Since decades, surface water bodies have been exposed to pesticides from agriculture. In many places, retention systems are regarded as an important mitigation strategy to lower pesticide pollution. Hence, the processes governing the transport of pesticides in and through a retention system have to be understood to achieve sufficient pesticide attenuation. In this study, the temporal dynamics of metazachlor and its transformation products metazachlor-oxalic acid (OA) and -sulphonic acid (ESA) were observed in an agricultural retention pond and hydrologic tracers helped to understand system-inherent processes. Pesticide measurements were carried out for 80 days after their application during transient flow conditions. During a short-term (3 days) experiment, the tracers bromide, uranine and sulphorhodamine B were used to determine hydraulic conditions, residence times and sorption potential. A long-term experiment with sodium naphthionate (2 months) and isotopes (12 months) provided information about inputs via interflow and surface-groundwater interactions. During transient conditions, high concentration pulses of up to 35 µg L-1 metazachlor, 14.7 µg L-1 OA and 22.5 µg L-1 ESA were quantified that enduringly raised solute concentrations in the pond. Mean residence time in the system accounted for approximately 4 h showing first tracer breakthrough after 5 min and last tracer concentrations 72 h after injection. While input via interflow was confirmed, no evidence for surface-groundwater interaction was found. Different tracers illustrated potentials for sorption and photolytic degradation inside the system. This study shows that high-resolution sampling is essential to obtain robust results about retention efficiency and that hydrological tracers may be used to determine the governing processes.


Subject(s)
Acetamides/analysis , Herbicides/analysis , Hydrology/methods , Water Pollutants, Chemical/analysis , Acetamides/chemistry , Agriculture , Biodegradation, Environmental , Bromides/analysis , Fluorescein/analysis , Germany , Groundwater , Herbicides/chemistry , Oxalic Acid/chemistry , Ponds , Rhodamines/analysis , Sulfonic Acids/chemistry , Water Pollutants, Chemical/chemistry , Water Pollution, Chemical/prevention & control
10.
Environ Sci Eur ; 30(1): 4, 2018.
Article in English | MEDLINE | ID: mdl-29492370

ABSTRACT

BACKGROUND: The separation of runoff components within a model simulation is of great importance for a successful implementation of management measures. Diatoms could be a promising indicator for tile drainage flow due to their diverse preferences to different aquatic habitats. In this study, we collected diatom samples of 9 sites (4 tile drainage, TD, and 5 river sites, Ri) in a German lowland catchment at a weekly or biweekly time step from March to July 2013 with the aim of testing the suitability of diatoms for tile drainage flow, which is typical for lowland catchment. RESULTS: Planothidium lanceolatum, Ulnaria biceps, and Navicula gregaria dominated in TD sites with relative abundances of 22.2, 21.5, and 10.9%, respectively. For Ri sites, the most abundant species was Navicula lanceolata (20.5%), followed by Ulnaria biceps (12.9%), Cyclotella meneghiniana (9.5%), and Planothidium lanceolatum (9.3%). Compared with Ri sites, TD had a lower diatom density, biomass, species richness, and percentage of Aquatic/Riparian diatoms (AqRi%). However, the proportion of Riparian diatoms (RiZo%) increased at TD. Indicator value method (IndVal) revealed that the two groups (Ri and TD) were characterized by different indicator species. Fifteen taxa, including Cocconeis placentula, Cyclotella meneghiniana, N. lanceolata, and U. biceps, were significant indicators for Ri sites. Planothidium lanceolatum, Achnanthidium minutissimum, and Navicula gregaria were significant indicators for TD sites. CONCLUSION: A pronounced variation was found in the species lists of diatom community between Ri and TD water body types associated with different indicator species. With respect to hydrograph separation, these findings highlight the suitability of diatoms as an indicator for tile drainage flow. However, spatial and temporal variations of diatoms should be considered in future surveys.

11.
Sci Total Environ ; 618: 26-38, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29128775

ABSTRACT

Lentic small water bodies have a high ecological potential as they fulfill several ecosystem services such as the retention of water and pollutants. They serve as a hot spot of biodiversity. Due to their location in or adjacent to agricultural fields, they can be influenced by inputs of pesticides and their transformation products. Since small water bodies have rarely been part of monitorings/campaigns up to now, their current exposure and processes guiding the pesticide input are not understood, yet. This study presents results of a sampling campaign of 10 lentic small water bodies from 2015 to 2016. They were sampled once after the spring application for a pesticide target screening, before autumn application and three times after rainfall events following the application. The autumn sampling focused on the herbicides metazachlor, flufenacet and their transformation products - oxalic acid and - sulfonic acid as representatives for common pesticides in the study region. The concentrations were associated with rainfall before and after application, characteristics of the site and the water bodies, physicochemical parameters and the applied amount of pesticides. The key results of the pesticide screening in spring indicate positive detections of pesticides which have not been applied for years to the single fields. The autumn sampling showed frequent occurrences of the transformation products, which are formed in soil, from 39% to 94% of all samples (n=71). Discharge patterns were observed for metazachlor with highest concentrations in the first sample after application and then decreasing, but not for flufenacet. The concentrations of the transformation products increased over time and revealed highest values mainly in the last sample. Besides rainfall patterns right after application, the spatial and temporal dissemination of the pesticides to the water bodies seems to play a major role to understand the exposure of lentic small water bodies.

12.
Sci Rep ; 6: 36950, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27841310

ABSTRACT

There has been increasing interest in diatom-based bio-assessment but we still lack a comprehensive understanding of how to capture diatoms' temporal dynamics with an appropriate sampling frequency (ASF). To cover this research gap, we collected and analyzed daily riverine diatom samples over a 1-year period (25 April 2013-30 April 2014) at the outlet of a German lowland river. The samples were classified into five clusters (1-5) by a Kohonen Self-Organizing Map (SOM) method based on similarity between species compositions over time. ASFs were determined to be 25 days at Cluster 2 (June-July 2013) and 13 days at Cluster 5 (February-April 2014), whereas no specific ASFs were found at Cluster 1 (April-May 2013), 3 (August-November 2013) (>30 days) and Cluster 4 (December 2013 - January 2014) (<1 day). ASFs showed dramatic seasonality and were negatively related to hydrological wetness conditions, suggesting that sampling interval should be reduced with increasing catchment wetness. A key implication of our findings for freshwater management is that long-term bio-monitoring protocols should be developed with the knowledge of tracking algal temporal dynamics with an appropriate sampling frequency.


Subject(s)
Diatoms/classification , Environmental Monitoring/methods , Algorithms , Fresh Water/analysis , Rivers , Seasons
13.
J Environ Qual ; 43(1): 75-85, 2014 Jan.
Article in English | MEDLINE | ID: mdl-25602542

ABSTRACT

This study aims to assess the environmental fate of the commonly used herbicides flufenacet and metazachlor in the Northern German Lowlands with the ecohydrological Soil and Water Assessment Tool (SWAT model) and to test the sensitivity of pesticide-related input parameters on the modeled transport dynamics. The river discharge of the Kielstau watershed was calibrated (Nash-Sutcliffe efficiency [NSE], 0.83; = 0.84) and validated (NSE, 0.76; = 0.77) for a daily time step. The environmental fate of metazachlor (NSE, 0.68; = 0.62) and flufenacet (NSE, 0.13; = 0.51) was simulated adequately. In comparison to metazachlor, the simulated flufenacet concentration and loads show a lower model efficiency due to the weaker simulation of the stream flow. The in-stream herbicide loads were less than 0.01% of the applied amount in the observed time period and thus not in conflict with European Environmental Legislation. The sensitivity analysis showed that, besides the accurate simulation of stream flow, the parameterization of the temporal and spatial distribution of the herbicide application throughout the watershed is the key factor for appropriate modeling results, whereas the physicochemical properties of the pesticides play a minor role in the modeling process.

SELECTION OF CITATIONS
SEARCH DETAIL
...