Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters










Publication year range
1.
Biosens Bioelectron ; 246: 115890, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38048721

ABSTRACT

Real-time monitoring of health conditions is an emerging strong issue in health care, internet information, and other strongly evolving areas. Wearable electronics are versatile platforms for non-invasive sensing. Among a variety of wearable device principles, fiber electronics represent cutting-edge development of flexible electronics. Enabled by electrochemical sensing, fiber electronics have found a wide range of applications, providing new opportunities for real-time monitoring of health conditions by daily wearing, and electrochemical fiber sensors as explored in the present report are a promising emerging field. In consideration of the key challenges and corresponding solutions for electrochemical sensing fibers, we offer here a timely and comprehensive review. We discuss the principles and advantages of electrochemical sensing fibers and fabrics. Our review also highlights the importance of electrochemical sensing fibers in the fabrication of "smart" fabric designs, focusing on strategies to address key issues in fiber-based electrochemical sensors, and we provide an overview of smart clothing systems and their cutting-edge applications in therapeutic care. Our report offers a comprehensive overview of current developments in electrochemical sensing fibers to researchers in the fields of wearables, flexible electronics, and electrochemical sensing, stimulating forthcoming development of next-generation "smart" fabrics-based electrochemical sensing.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Electronics
2.
Chem Soc Rev ; 52(18): 6230-6253, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37551138

ABSTRACT

Electron, proton, and proton-coupled electron transfer (PCET) are crucial elementary processes in chemistry, electrochemistry, and biology. We provide here a gentle overview of retrospective and currently developing theoretical formalisms of chemical, electrochemical and biological molecular charge transfer processes, with examples of how to bridge electron, proton, and PCET theory with experimental data. We offer first a theoretical minimum of molecular electron, proton, and PCET processes in homogeneous solution and at electrochemical interfaces. We illustrate next the use of the theory both for simple electron transfer processes, and for processes that involve molecular reorganization beyond the simplest harmonic approximation, with dissociative electron transfer and inclusion of all charge transfer parameters. A core example is the electrochemical reduction of the S2O82- anion. This is followed by discussion of core elements of proton and PCET processes and the electrochemical dihydrogen evolution reaction on different metal, semiconductor, and semimetal (say graphene) electrode surfaces. Other further focus is on stochastic chemical rate theory, and how this concept can rationalize highly non-traditional behaviour of charge transfer processes in mixed solvents. As a second major area we address ("long-range") chemical and electrochemical electron transfer through molecular frameworks using notions of superexchange and hopping. Single-molecule and single-entity electrochemistry are based on electrochemical scanning probe microscopies. (In operando) scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) are particularly emphasized, with theoretical notions and new molecular electrochemical phenomena in the confined tunnelling gap. Single-molecule surface structure and electron transfer dynamics are illustrated by self-assembled thiol molecular monolayers and by more complex redox target molecules. This discussion also extends single-molecule electrochemistry to bioelectrochemistry of complex redox metalloproteins and metalloenzymes. Our third major area involves computational overviews of molecular and electronic structure of the electrochemical interface, with new computational challenges. These relate to solvent dynamics in bulk and confined space (say carbon nanostructures), electrocatalysis, metallic and semiconductor nanoparticles, d-band metals, carbon nanostructures, spin catalysis and "spintronics", and "hot" electrons. Further perspectives relate to metal-organic frameworks, chiral surfaces, and spintronics.

3.
Colloids Surf B Biointerfaces ; 220: 112941, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36270138

ABSTRACT

Multi-functional small molecules attached to an electrode surface can bind non-covalently to the redox enzyme fructose dehydrogenase (FDH) to ensure efficient electrochemical electron transfer (ET) and electrocatalysis of the enzyme in both mediated (MET) and direct (DET) ET modes. The present work investigates the potential of exploiting secondary, electrostatic and hydrophobic interactions between substituents on a small molecular bridge and the local FDH surfaces. Such interactions ensure alignment of the enzyme in an orientation favourable for both MET and DET. We have used a group of novel synthesized anthraquinones as the small molecule bridge, functionalised with electrostatically neutral, anionic, or cationic substituents. Particularly, we investigated the immobilisation of FDH on a nanoporous gold (NPG) electrode decorated with the novel synthesised anthraquinones using electrochemical methods. The best DET-capable fraction out of four anthraquinone derivatives tested is achieved for an anthraquinone functionalised with an anionic sulphonate group. Our study demonstrates, how the combination of chemical design and bioelectrochemistry can be brought to control alignment of enzymes in productive orientations on electrodes, a paradigm for thiol modified surfaces in biosensors and bioelectronics.


Subject(s)
Biosensing Techniques , Carbohydrate Dehydrogenases , Anthraquinones , Carbohydrate Dehydrogenases/chemistry , Carbohydrate Dehydrogenases/metabolism , Electrodes , Electron Transport , Electrons , Enzymes, Immobilized/chemistry , Fructose/chemistry , Fructose/metabolism
4.
Proc Natl Acad Sci U S A ; 119(39): e2122183119, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36136968

ABSTRACT

Single-molecule electrochemical science has advanced over the past decades and now extends well beyond molecular imaging, to molecular electronics functions such as rectification and amplification. Rectification is conceptually the simplest but has involved mostly challenging chemical synthesis of asymmetric molecular structures or asymmetric materials and geometry of the two enclosing electrodes. Here we propose an experimental and theoretical strategy for building and tuning in situ (in operando) rectification in two symmetric molecular structures in electrochemical environment. The molecules were designed to conduct electronically via either their lowest unoccupied molecular orbital (LUMO; electron transfer) or highest occupied molecular orbital (HOMO; "hole transfer"). We used a bipotentiostat to control separately the electrochemical potential of the tip and substrate electrodes of an electrochemical scanning tunneling microscope (EC-STM), which leads to independent energy alignment of the STM tip, the molecule, and the STM substrate. By creating an asymmetric energy alignment, we observed single-molecule rectification of each molecule within a voltage range of ±0.5 V. By varying both the dominating charge transporting LUMO or HOMO energy and the electrolyte concentration, we achieved tuning of the polarity as well as the amplitude of the rectification. We have extended an earlier proposed theory that predicts electrolyte-controlled rectification to rationalize all the observed in situ rectification features and found excellent agreement between theory and experiments. Our study thus offers a way toward building controllable single-molecule rectifying devices without involving asymmetric molecular structures.

5.
Biosens Bioelectron ; 210: 114337, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35537312

ABSTRACT

Direct electron transfer (DET) of enzymes on electrode surfaces is highly desirable both for fundamental mechanistic studies and to achieve membrane- and mediator-less bioenergy harvesting. In this report, we describe the preparation and comprehensive structural and electrochemical characterization of a three-dimensional (3D) graphene-based carbon electrode, onto which the two-domain redox enzyme Myriococcum thermophilum cellobiose dehydrogenase (MtCDH) is immobilized. The electrode is prepared by an entirely novel method, which combines in a single step electrochemical reduction of graphene oxide (GO) and simultaneous electrodeposition of positively charged polyethylenimine (PEI), resulting in a well dispersed MtCDH surface. The resulting MtCDH bio-interface was characterized structurally in detail, optimized, and found to exhibit a DET maximum current density of 7.7 ± 0.9 µA cm-2 and a half-lifetime of 48 h for glucose oxidation, attributed to favorable MtCDH surface orientation. A dual, entirely DET-based enzymatic biofuel cell (EBFC) was constructed with a MtCDH bioanode and a Myrothecium verrucaria bilirubin oxidase (MvBOD) biocathode. The EBFC delivers a maximum power density (Pmax) of 7.6 ± 1.3 µW cm-2, an open-circuit voltage (OCV) of 0.60 V, and an operational lifetime over seven days, which exceeds most reported CDH based DET-type EBFCs. A biosupercapacitor/EBFC hybrid was also constructed and found to register maximum power densities 62 and 43 times higher than single glucose/air and lactose/air EBFCs, respectively. This hybrid also shows excellent operational stability with self-charging/discharging over at least 500 cycles.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Biosensing Techniques/methods , Carbohydrate Dehydrogenases , Electrodes , Electrons , Enzymes, Immobilized/chemistry , Glucose/metabolism , Sordariales
6.
Nano Lett ; 22(12): 4854-4860, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35639869

ABSTRACT

New nanostructures often reflect new and exciting properties. Here, we present an two-dimensional, hitherto unreported PdO square network with lateral dimensions up to hundreds of nanometers growing on reduced graphene oxide (rGO), forming a hybrid nanofilm. An intermediate state of dissolved Pd(0) in the bacterium S. oneidensis MR-1 is pivotal in the biosynthesis and inspires an abiotic synthesis. The PdO network shows a lattice spacing of 0.5 nm and a thickness of 1.8 nm on both sides of an rGO layer and is proposed to be cubic or tetragonal crystal, as confirmed by structural simulations. A 2D silver oxide analog with a similar structure is also obtained using an analogous abiotic synthesis. Our study thus opens a simple route to a whole new class of 2D metal oxides on rGO as promising candidates for graphene superlattices with unexplored properties and potential applications for example in electronics, sensing, and energy conversion.


Subject(s)
Graphite , Nanostructures , Graphite/chemistry , Nanostructures/chemistry , Palladium/chemistry
7.
Small ; 17(47): e2103461, 2021 11.
Article in English | MEDLINE | ID: mdl-34672082

ABSTRACT

Photothermal therapy requires efficient plasmonic nanomaterials with small size, good water dispersibility, and biocompatibility. This work reports a one-pot, 2-min synthesis strategy for ultrathin CuS nanocrystals (NCs) with precisely tunable size and localized surface plasmon resonance (LSPR), where a single-starch-layer coating leads to a high LSPR absorption at the near-IR wavelength 980 nm. The CuS NC diameter increases from 4.7 (1 nm height along [101]) to 28.6 nm (4.9 nm height along [001]) accompanied by LSPR redshift from 978 to 1200 nm, as the precursor ratio decreases from 1 to 0.125. Photothermal temperature increases by 38.6 °C in 50 mg L-1 CuS NC solution under laser illumination (980 nm, 1.44 W cm-2 ). Notably, 98.4% of human prostate cancer PC-3/Luc+ cells are killed by as little as 5 mg L-1 starch-coated CuS NCs with 3-min laser treatment, whereas CuS NCs without starch cause insignificant cell death. LSPR modeling discloses that the starch layer enhances the photothermal effect by significantly increasing the free carrier density and blue-shifting the LSPR toward 980 nm. This study not only presents a new type of photothermally highly efficient ultrathin CuS NCs, but also offers in-depth LSPR modeling investigations useful for other photothermal nanomaterial designs.


Subject(s)
Nanoparticles , Photothermal Therapy , Copper , Humans , Male , Starch
8.
Anal Chem ; 93(18): 7148-7149, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33904729

Subject(s)
Glucose Oxidase
9.
Biosens Bioelectron ; 167: 112500, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32829175

ABSTRACT

Aggregation of reduced graphene oxide (RGO) due to π-π stacking is a recurrent problem in graphene-based electrochemistry, decreasing the effective working area and therefore the performance of the RGO electrodes. Dispersing RGO on three-dimensional (3D) carbon paper electrodes is one strategy towards overcoming this challenge, with partial relief aggregation. In this report, we describe the grafting of negatively charged 4-aminobenzoic acid (4-ABA) onto a graphene functionalized carbon paper electrode surface. 4-ABA functionalization induces separation of the RGO layers, at the same time leading to favorable orientation of the blue multi-copper enzyme Myrothecium verrucaria bilirubin oxidase (MvBOD) for direct electron transfer (DET) in the dioxygen reduction reaction (ORR) at neutral pH. Simultaneous electroreduction of graphene oxide to RGO and covalent attachment of 4-ABA are achieved by applying alternating cathodic and anodic electrochemical potential pulses, leading to a high catalytic current density (Δjcat:193 ± 4 µA cm-2) under static conditions. Electrochemically grafted 4-ABA not only leads to a favorable orientation of BOD as validated by fitting a kinetic model to the electrocatalytic data, but also acts to alleviate RGO aggregation as disclosed by scanning electron microscopy, most likely due to the electrostatic repulsion between 4-ABA-grafted graphene layers. With a half-lifetime of 55 h, the bioelectrode also shows the highest operational stability for DET-type MvBOD-based bioelectrodes reported to date. The bioelectrode was finally shown to work well as a biocathode of a membrane-less glucose/O2 enzymatic biofuel cell with a maximum power density of 22 µW cm-2 and an open circuit voltage of 0.51 V.


Subject(s)
Biosensing Techniques , Graphite , Electrodes , Enzymes, Immobilized , Hypocreales , Oxidoreductases Acting on CH-CH Group Donors
10.
Bioelectrochemistry ; 134: 107537, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32361268

ABSTRACT

Enzymatic biofuel cells (EBFCs) have attracted increasing attention due to their potential to harvest energy from a wide range of fuels under mild conditions. Fabrication of effective bioelectrodes is essential for the practical application of EBFCs. Graphene possesses unique physiochemical properties making it an attractive material for the construction of EBFCs. Despite these promising properties, graphene has not been used for EBFCs as frequently as carbon nanotubes, another nanoscale carbon allotrope. This review focuses on current research progress in graphene-based electrodes, including electrodes modified with graphene derivatives and graphene composites, as well as free-standing graphene electrodes. Particular features of graphene-based electrodes such as high conductivity, mechanical flexibility and high porosity for bioelectrochemical applications are highlighted. Reports on graphene-based EBFCs from the last five years are summarized, and perspectives for graphene-based EBFCs are offered.


Subject(s)
Bioelectric Energy Sources , Enzymes/metabolism , Graphite/chemistry , Electrochemistry , Electrodes
11.
J Am Chem Soc ; 142(24): 10646-10658, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32432870

ABSTRACT

Electrochemical electron transfer (ET) of transition metal complexes or redox metalloproteins can be catalyzed by more than an order of magnitude by molecular scale metallic nanoparticles (NPs), often rationalized by concentration enhancement of the redox molecules in the interfacial region, but collective electronic AuNP array effects have also been forwarded. Using DFT combined with molecular electrochemical ET theory we explore here whether a single molecular scale Au nanocluster (AuC) between a Au (111) surface and the molecular redox probe ferrocene/ferricinium (Fc/Fc+) can trigger an ET rate increase. Computational challenges limit us to AunCs (n up to 147), which are smaller than most electrocatalytic AuCs studied experimentally. AuC-coating thiols are addressed both as adsorption of two S atoms at the structural Au55 bridge sites and as superexchange of variable-size AuCs via a single six-carbon alkanethiyl bridge. Our results are guiding, but enable comparing many AuC surface details (apex, ridge, face, direct vs superexchange ET) with a planar Au(111) surface. The rate-determining electronic transmission coefficients for ET between Fc/Fc+ and AuC are highly sensitive to subtle AuC electronic features. The transmission coefficients mostly compete poorly with direct Fc/Fc+ ET at the Au(111) surface, but Fc/Fc+ 100 face-bound on Au79 and Au147 and ridge bound on Au19 leads to a 2- or 3-fold rate enhancement, in different distance ranges. Single AuCs can thus indeed cause rate enhancement of simple electrochemical ET, but additional, possibly collective AuNC effects, as well as larger clusters and more complete coating layers, also need to be considered.

12.
Nanoscale ; 11(37): 17235-17251, 2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31418761

ABSTRACT

Cysteine (Cys) is an essential amino acid with a carboxylic acid, an amine and a thiol group. We have studied the surface structure and adsorption dynamics of l-cysteine adlayers on Au(100) from aqueous solution using electrochemistry, high-resolution electrochemical scanning tunnelling microscopy (in situ STM), and molecular modelling. Cys adsorption on this low-index Au-surface has been much less studied than Cys adsorption on Au(111)- and Au(110)-electrode surfaces. Chronopotentiometry was employed to monitor the adsorption dynamics at sub-second resolution and showed that adsorption is completed in 30 minutes at Cys concentrations above 100 µM. Two consecutive steps could be fitted to these data. Two separate reductive desorption peaks of Cys adlayers on Au(100) with a total coverage of 2.52 (±0.15) × 10-10 mol cm-2 were observed. In situ STM showed that the adsorbed Cys is organized in stripes with "fork-like" features which co-exist in (11 × 2)-2Cys and (7 × 2)-2Cys lattices, quite differently from Cys adsorption on Au(111)-electrode surfaces. Stripe structures with bright STM contrast in the center suggest that a second Cys adlayer on top of a first adlayer is formed, supporting the dual-peak reductive desorption of Cys adlayers. In addition, monolayers of both pure l-Cys and pure d-Cys and a 1 : 1 racemic mixture of l- and d-Cys on Au(100) were studied. Virtually identical macroscopic electrochemical features were found, but in situ STM discloses many more defects for the racemic mixture than for the pure enantiomers due to structural mismatch of l- and d-Cys. Density functional theory (DFT) calculations combined with a cluster model for the Au(100) surface were carried out to investigate the adsorption energy and geometry of the adsorbed monomer and dimer Cys species in different orientations, with detailed attention to the chirality effects. Optimized DFT geometries were used to construct model STM images, and kinetic Monte Carlo simulations undertaken to illuminate the growth of adsorbate rows and the mechanism of the adlayer formation as well as the Cys adsorption patterns specific to the Au(100)-electrode surface.


Subject(s)
Cysteine/chemistry , Electrochemical Techniques , Gold/chemistry , Models, Chemical , Models, Molecular
14.
Bioelectrochemistry ; 128: 94-99, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30959399

ABSTRACT

We report on a hybrid bioelectrochemical system that integrates an energy converting part, viz. a glucose/oxygen enzymatic fuel cell, with a charge-storing component, in which the redox features of the immobilized redox protein cytochrome c (cyt c) were utilized. Bilirubin oxidase and pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) were employed as the biocatalysts for dioxygen reduction and glucose oxidation, respectively. A bi-protein PQQ-GDH/cyt c signal chain was created that facilitates electron transfer between the enzyme and the electrode surface. The assembled supercapacitor/biofuel cell hybrid biodevice displays a 15 times higher power density tested in the pulse mode compared to the performance achieved from the continuously operating regime (4.5 and 0.3 µW cm-2, respectively) with an 80% residual activity after 50 charge/discharge pulses. This can be considered as a notable step forward in the field of glucose/oxygen membrane-free, biocompatible hybrid power sources.


Subject(s)
Bioelectric Energy Sources , Cytochromes c/metabolism , Enzymes, Immobilized/metabolism , Glucose Dehydrogenases/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Electrochemical Techniques/instrumentation , Electrodes , Electron Transport , Glucose/metabolism , Oxidation-Reduction
15.
Chem Sci ; 10(14): 3927-3936, 2019 Apr 14.
Article in English | MEDLINE | ID: mdl-31015932

ABSTRACT

New anthraquinone derivatives with either a single or two thiol groups (AQ1 and AQ2) were synthesized and immobilized in self-assembled monolayers (SAMs) on Au(111) electrodes via Au-S bonds. The resultant AQ1- and AQ2-SAMs were studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which enabled mapping of the gold-carbonyl group interactions and other dynamics in the Au-S bound molecular framework. Understanding of these interactions is important for research on thiol-coated gold nanoclusters, since (I) anthraquinone derivatives are a major compound family for providing desired redox functionality in multifarious assays or devices, and (II) the gold-carbonyl interactions can strongly affect anthraquinone electrochemistry. Based on equivalent circuit analysis, it was found that there is a significant rise in polarization resistance (related to SAM structural reorganization) at potentials that can be attributed to the quinone/semi-quinone interconversion. The equivalent circuit model was validated by calculation of pseudocapacitance for quinone-to-hydroquinone interconversion, in good agreement with the values derived from CV. The EIS and CV patterns obtained provide consistent evidence for two different ECEC (i.e. proton-controlled ET steps, PCET) pathways in AQ1- and AQ2-SAMs. Notably, it was found that the formal reorganization (free) energies obtained for the elementary PCET steps are unexpectedly small for both SAMs studied. This anomaly suggests high layer rigidity and recumbent molecular orientation on gold surfaces, especially for the AQ2-SAMs. The results strongly indicate that gold-carbonyl group interactions can be controlled by favorable structural organization of anthraquinone-based molecules on gold surfaces.

16.
Proc Natl Acad Sci U S A ; 116(9): 3407-3412, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30737288

ABSTRACT

Electron transfer reactions can now be followed at the single-molecule level, but the connection between the microscopic and macroscopic data remains to be understood. By monitoring the conductance of a single molecule, we show that the individual electron transfer reaction events are stochastic and manifested as large conductance fluctuations. The fluctuation probability follows first-order kinetics with potential dependent rate constants described by the Butler-Volmer relation. Ensemble averaging of many individual reaction events leads to a deterministic dependence of the conductance on the external electrochemical potential that follows the Nernst equation. This study discloses a systematic transition from stochastic kinetics of individual reaction events to deterministic thermodynamics of ensemble averages and provides insights into electron transfer processes of small systems, consisting of a single molecule or a small number of molecules.

17.
Nanoscale Adv ; 1(7): 2562-2570, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-36132730

ABSTRACT

Application of enzymatic biofuel cells (EBFCs) in wearable or implantable biomedical devices requires flexible and biocompatible electrode materials. To this end, freestanding and low-cost graphene paper is emerging among the most promising support materials. In this work, we have exploited the potential of using graphene paper with a two-dimensional active surface (2D-GP) as a carrier for enzyme immobilization to fabricate EBFCs, representing the first case of flexible graphene papers directly used in EBFCs. The 2D-GP electrodes were prepared via the assembly of graphene oxide (GO) nanosheets into a paper-like architecture, followed by reduction to form layered and cross-linked networks with good mechanical strength, high conductivity and little dependence on the degree of mechanical bending. 2D-GP electrodes served as both a current collector and an enzyme loading substrate that can be used directly as a bioanode and biocathode. Pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOx) adsorbed on the 2D-GP electrodes both retain their biocatalytic activities. Electron transfer (ET) at the bioanode required Meldola blue (MB) as an ET mediator to shuttle electrons between PQQ-GDH and the electrode, but direct electron transfer (DET) at the biocathode was achieved. The resulting glucose/oxygen EBFC displayed a notable mechanical flexibility, with a wide open circuit voltage range up to 0.665 V and a maximum power density of approximately 4 µW cm-2 both fully competitive with reported values for related EBFCs, and with mechanical flexibility and facile enzyme immobilization as novel merits.

18.
Nanoscale ; 10(19): 9133-9140, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29722407

ABSTRACT

The construction of molecular machines has captured the imagination of scientists for decades. Despite significant progress in the synthesis and studies of the properties of small-molecule components (smaller than 2-5 kilo Dalton), challenges regarding the incorporation of molecular components into real devices are still eminent. Nano-sized molecular machines operate the complex biological machinery of life, and the idea of mimicking the amazing functions using artificial nano-structures is intriguing. Both in small-molecule molecular machine components and in many naturally occurring molecular machines, mechanically interlocked molecules and structures are key functional components. In this work, we describe our initial efforts to interface mechanically-interlocked molecules and gold-nanoparticles (AuNPs); the molecular wire connecting the AuNPs is covered in an insulating rotaxane-layer, thus mimicking the macroscopic design of a copper wire. Taking advantage of recent progress in the preparation of supramolecular complexes of the cucurbit[7]uril (CB[7]) macrocycle, we have prepared a bis-thiol functionalised pseudo-rotaxane that enables us to prepare a AuNP-stoppered [2]rotaxane in water. The pseudo-rotaxane is held together extremely tightly (Ka > 1013 M-1), Ka being the association constant. We have studied the solution and gas phase guest-host chemistry using NMR spectroscopy, mass spectroscopy, and electrochemistry. The bis-thiol functionalised pseudo-rotaxane holds further a ferrocene unit in the centre of the rotaxane; this ferrocene unit enables us to address the system in detail with and without CB[7] and AuNPs using electrochemical methods.

19.
Macromol Rapid Commun ; 39(12): e1800125, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29709102

ABSTRACT

Amphiphilic block copolymer templating strategies are extensively used for syntheses of mesoporous materials. However, monodisperse tubular nanostructures are limited. Here, a general method is developed to synthesize monodisperse nanotubes with narrow diameter distribution induced by self-assembly of block copolymer. 3-Aminophenol (AP) and formaldehyde (F) polymerize and self-assemble with cylindrical PS-b-PEO micelles into worm-like PS-b-PEO@APF composites with uniform diameter (49 ± 3 nm). After template extraction, worm-like APF polymer nanotubes are formed. The structure and morphology of the polymer nanotubes can be tuned by regulating the synthesis conditions. Furthermore, PS-b-PEO@APF composites are uniformly converted to isomorphic carbon nanotubes with large surface area of 662 m2 g-1 , abundant hierarchical porous frameworks and nitrogen doping. The synthesis can be extended to silica nanotubes. These findings open an avenue to the design of porous materials with controlled structural framework, composition, and properties for a wide range of applications.


Subject(s)
Aminophenols/chemistry , Formaldehyde/chemistry , Nanotubes, Carbon/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Polystyrenes/chemistry , Micelles , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotubes, Carbon/ultrastructure , Polymers/chemical synthesis , Porosity , Silicon Dioxide/chemistry
20.
Langmuir ; 34(12): 3610-3618, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29510058

ABSTRACT

Metalloporphyrins are active sites in metalloproteins and synthetic catalysts. They have also been studied extensively by electrochemistry as well as being prominent targets in electrochemical scanning tunneling microscopy (STM). Previous studies of FePPIX adsorbed on graphite and alkylthiol modified Au electrodes showed a pair of reversible Fe(III/II)PPIX peaks at about -0.41 V (vs NHE) at high solution pH. We recently used iron protoporphyrin IX (FePPIX) as an intercalating probe for long-range electrochemical electron transfer through a G-quadruplex oligonucleotide (DNAzyme); this study disclosed two, rather than a single pair of voltammetric peaks with a new and dominating peak, shifted 200 mV positive relative to the ≈-0.4 V peak. Prompted by this unexpected observation, we report here a study of the voltammetry of FePPIX itself on single-crystal Au(111), (100), and (110) and polycrystalline Au electrode surfaces. In all cases the dominating pair of new Fe(III/II)PPIX redox peaks, shifted positively by more than 200 mV compared to those of previous studies appeared. This observation is supported by density functional theory (DFT) which shows that strong dispersion forces in the FePPIX/Au electronic interaction drive the midpoint potential toward positive values. The FePPIX spin states depend on interaction with the Au(111) interface, converting all the Fe(II)/(III)PPIX species into low-spin states. These results support electrochemical evidence for the nature of the electronic coupling between FePPIX and Au-surfaces, and the electronic states of adsorbate molecules, with a bearing also on recent reports of magnetic FePPIX/Au(111) interactions in ultrahigh vacuum (UHV).

SELECTION OF CITATIONS
SEARCH DETAIL
...