Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
3.
Nat Commun ; 15(1): 1624, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388459

ABSTRACT

LAR-RPTPs are evolutionarily conserved presynaptic cell-adhesion molecules that orchestrate multifarious synaptic adhesion pathways. Extensive alternative splicing of LAR-RPTP mRNAs may produce innumerable LAR-RPTP isoforms that act as regulatory "codes" for determining the identity and strength of specific synapse signaling. However, no direct evidence for this hypothesis exists. Here, using targeted RNA sequencing, we detected LAR-RPTP mRNAs in diverse cell types across adult male mouse brain areas. We found pronounced cell-type-specific patterns of two microexons, meA and meB, in Ptprd mRNAs. Moreover, diverse neural circuits targeting the same neuronal populations were dictated by the expression of different Ptprd variants with distinct inclusion patterns of microexons. Furthermore, conditional ablation of Ptprd meA+ variants at presynaptic loci of distinct hippocampal circuits impaired distinct modes of synaptic transmission and objection-location memory. Activity-triggered alterations of the presynaptic Ptprd meA code in subicular neurons mediates NMDA receptor-mediated postsynaptic responses in CA1 neurons and objection-location memory. Our data provide the evidence of cell-type- and/or circuit-specific expression patterns in vivo and physiological functions of LAR-RPTP microexons that are dynamically regulated.


Subject(s)
Synapses , Synaptic Transmission , Mice , Animals , Male , Synaptic Transmission/physiology , Synapses/metabolism , Signal Transduction , Neurons/metabolism , Cell Adhesion Molecules/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , RNA, Messenger/metabolism
4.
Curr Opin Neurobiol ; 81: 102728, 2023 08.
Article in English | MEDLINE | ID: mdl-37236068

ABSTRACT

Postsynaptic GABAergic receptors interact with various membrane and intracellular proteins to mediate inhibitory synaptic transmission. They form structural and/or signaling synaptic protein complexes that perform a variety of postsynaptic functions. In particular, the key GABAergic synaptic scaffold, gephyrin, and its interacting partners govern downstream signaling pathways that are essential for GABAergic synapse development, transmission, and plasticity. In this review, we discuss recent researches on GABAergic synaptic signaling pathways. We also outline the main outstanding issues that need to be addressed in this field and highlight the association of dysregulated GABAergic synaptic signaling with the onset of various brain disorders.


Subject(s)
Receptors, GABA-A , Synapses , Receptors, GABA-A/metabolism , Synapses/physiology , Synaptic Transmission/physiology , Carrier Proteins/metabolism , Neuronal Plasticity/physiology
5.
Sci Rep ; 13(1): 6547, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085584

ABSTRACT

Neuroinflammation impacts the brain and cognitive behavior through microglial activation. In this study, we determined the temporal sequence from microglial activation to synaptic dysfunction and cognitive behavior induced by neuroinflammation in mice. We found that LPS injection activated microglia within a short period, followed by impairments in GABAergic synapses, and that these events led to long-term cognitive impairment. We demonstrated that, 3 days after LPS injection, microglia in the hippocampus were significantly activated due to the LPS-induced inflammation in association with alterations in cellular morphology, microglial density, and expression of phagocytic markers. GABAergic synaptic impairments were detected at 4-6 days after LPS treatment, a time when microglia activity had returned to normal. Consequently, memory impairment persisted for 6 days after injection of LPS. Our results suggest that neuroinflammation induces microglia activation, GABAergic synaptic deficits and prolonged memory impairment over a defined temporal sequence. Our observations provide insight into the temporal sequence of neuroinflammation-associated brain pathologies. Moreover, the specific loss of inhibitory synapses accompanying the impaired inhibitory synaptic transmission provides mechanistic insight that may explain the prolonged cognitive deficit observed in patients with neuroinflammation. Thus, this study provides essential clues regarding early intervention strategies against brain pathologies accompanying neuroinflammation.


Subject(s)
Cognitive Dysfunction , Microglia , Mice , Animals , Microglia/metabolism , Lipopolysaccharides/metabolism , Neuroinflammatory Diseases , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Inflammation/pathology , Memory Disorders/metabolism , Mice, Inbred C57BL
6.
Nat Commun ; 13(1): 4112, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840571

ABSTRACT

SLITRK2 is a single-pass transmembrane protein expressed at postsynaptic neurons that regulates neurite outgrowth and excitatory synapse maintenance. In the present study, we report on rare variants (one nonsense and six missense variants) in SLITRK2 on the X chromosome identified by exome sequencing in individuals with neurodevelopmental disorders. Functional studies showed that some variants displayed impaired membrane transport and impaired excitatory synapse-promoting effects. Strikingly, these variations abolished the ability of SLITRK2 wild-type to reduce the levels of the receptor tyrosine kinase TrkB in neurons. Moreover, Slitrk2 conditional knockout mice exhibited impaired long-term memory and abnormal gait, recapitulating a subset of clinical features of patients with SLITRK2 variants. Furthermore, impaired excitatory synapse maintenance induced by hippocampal CA1-specific cKO of Slitrk2 caused abnormalities in spatial reference memory. Collectively, these data suggest that SLITRK2 is involved in X-linked neurodevelopmental disorders that are caused by perturbation of diverse facets of SLITRK2 function.


Subject(s)
Neurodevelopmental Disorders , Synapses , Animals , Cognition , Hippocampus/physiology , Mice , Mice, Knockout , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Synapses/metabolism
7.
J Inflamm Res ; 15: 3053-3063, 2022.
Article in English | MEDLINE | ID: mdl-35645573

ABSTRACT

Background: Peripheral inflammation-triggered mild neuroinflammation impacts the brain and behavior through microglial activation. In this study, we performed an unbiased analysis of the vulnerability of different brain areas to neuroinflammation induced by systemic inflammation. Methods: We injected mice with a single low dose of LPS to induce mild inflammation and then analyzed microglial activation in 34 brain regions by immunohistochemical methods and whole-brain imaging using multi-slide scanning microscopy. We also conducted quantitative RT-PCR to measure the levels of inflammatory cytokines in selected brain regions of interest. Results: We found that microglia in different brain regions are differentially activated by mild, LPS-induced inflammation relative to the increase in microglia numbers or increased CD68 expression. The increased number of microglia induced by mild inflammation was not attributable to infiltration of peripheral immune cells. In addition, microglia residing in brain regions, in which a single low-dose injection of LPS produced microglial changes, preferentially generated pro-inflammatory cytokines. Conclusion: Our results suggest that mild neuroinflammation induces regionally different microglia activation, producing pro-inflammatory cytokines. Our observations provide insight into induction of possible region-specific neuroinflammation-associated brain pathologies through microglial activation.

8.
Trends Neurosci ; 45(7): 517-528, 2022 07.
Article in English | MEDLINE | ID: mdl-35577622

ABSTRACT

Multiple synaptic adhesion proteins are thought to collectively define the properties of specific synapses and thereby shape the architectures of neural circuits. Growing evidence supports a molecular model in which a set of central hub proteins interacts with a vast number of other proteins to organize multifarious synaptic adhesion pathways. However, several fundamental open questions remain, partly owing to drawbacks in current approaches and interpretations. In this opinion, we provide an overview of synaptic adhesion pathways, underscoring open questions to be addressed in future work, and highlighting approaches for advancing understanding of synaptic adhesion processes.


Subject(s)
Synapses , Humans , Synapses/metabolism
9.
Biol Psychiatry ; 91(9): 821-831, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35219498

ABSTRACT

BACKGROUND: IQSEC3, a gephyrin-binding GABAergic (gamma-aminobutyric acidergic) synapse-specific guanine nucleotide exchange factor, was recently reported to regulate activity-dependent GABAergic synapse maturation, but the underlying signaling mechanisms remain incompletely understood. METHODS: We generated mice with conditional knockout (cKO) of Iqsec3 to examine whether altered synaptic inhibition influences hippocampus-dependent fear memory formation. In addition, electrophysiological recordings, immunohistochemistry, and behavioral assays were used to address our question. RESULTS: We found that Iqsec3-cKO induces a specific reduction in GABAergic synapse density, GABAergic synaptic transmission, and maintenance of long-term potentiation in the hippocampal CA1 region. In addition, Iqsec3-cKO mice exhibited impaired fear memory formation. Strikingly, Iqsec3-cKO caused abnormally enhanced activation of ribosomal P70-S6K1-mediated signaling in the hippocampus but not in the cortex. Furthermore, inhibiting upregulated S6K1 signaling by expressing dominant-negative S6K1 in the hippocampal CA1 of Iqsec3-cKO mice completely rescued impaired fear learning and inhibitory synapse density but not deficits in long-term potentiation maintenance. Finally, upregulated S6K1 signaling was rescued by IQSEC3 wild-type, but not by an ARF-GEF (adenosine diphosphate ribosylation factor-guanine nucleotide exchange factor) inactive IQSEC3 mutant. CONCLUSIONS: Our results suggest that IQSEC3-mediated balanced synaptic inhibition in hippocampal CA1 is critical for the proper formation of hippocampus-dependent fear memory.


Subject(s)
Fear , Guanine Nucleotide Exchange Factors , Hippocampus , Synapses , Animals , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Hippocampus/metabolism , Long-Term Potentiation , Mice , Mice, Inbred C57BL , Mice, Knockout , Synapses/metabolism , Up-Regulation
10.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35022233

ABSTRACT

Synaptic cell-adhesion molecules (CAMs) organize the architecture and properties of neural circuits. However, whether synaptic CAMs are involved in activity-dependent remodeling of specific neural circuits is incompletely understood. Leucine-rich repeat transmembrane protein 3 (LRRTM3) is required for the excitatory synapse development of hippocampal dentate gyrus (DG) granule neurons. Here, we report that Lrrtm3-deficient mice exhibit selective reductions in excitatory synapse density and synaptic strength in projections involving the medial entorhinal cortex (MEC) and DG granule neurons, accompanied by increased neurotransmitter release and decreased excitability of granule neurons. LRRTM3 deletion significantly reduced excitatory synaptic innervation of hippocampal mossy fibers (Mf) of DG granule neurons onto thorny excrescences in hippocampal CA3 neurons. Moreover, LRRTM3 loss in DG neurons significantly decreased mossy fiber long-term potentiation (Mf-LTP). Remarkably, silencing MEC-DG circuits protected against the decrease in the excitatory synaptic inputs onto DG and CA3 neurons, excitability of DG granule neurons, and Mf-LTP in Lrrtm3-deficient mice. These results suggest that LRRTM3 may be a critical factor in activity-dependent synchronization of the topography of MEC-DG-CA3 excitatory synaptic connections. Collectively, our data propose that LRRTM3 shapes the target-specific structural and functional properties of specific hippocampal circuits.


Subject(s)
Cortical Synchronization/physiology , Hippocampus/physiology , Membrane Proteins/metabolism , Nerve Net/physiology , Nerve Tissue Proteins/metabolism , Synapses/physiology , Animals , CA3 Region, Hippocampal/metabolism , Dentate Gyrus/metabolism , Entorhinal Cortex/metabolism , Long-Term Potentiation , Membrane Proteins/deficiency , Mice, Knockout , Mossy Fibers, Hippocampal/metabolism , Nerve Tissue Proteins/deficiency , Neurons/metabolism , Pseudopodia/metabolism , Synaptic Transmission/physiology
11.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35074912

ABSTRACT

Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Hippocampus/metabolism , Hippocampus/physiopathology , Neural Cell Adhesion Molecules/genetics , Neural Inhibition , Synapses/metabolism , Amyloid beta-Protein Precursor/genetics , CA1 Region, Hippocampal , Carrier Proteins , Dendrites/metabolism , GABAergic Neurons/metabolism , Interneurons , Models, Biological , Neural Cell Adhesion Molecules/chemistry , Neural Cell Adhesion Molecules/metabolism , Neural Inhibition/genetics , Protein Binding , Protein Interaction Domains and Motifs , Pyramidal Cells/metabolism , Receptors, GABA-B/metabolism , Synaptic Transmission
12.
Cell Rep ; 36(3): 109417, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34289353

ABSTRACT

Activity-dependent GABAergic synapse plasticity is important for normal brain functions, but the underlying molecular mechanisms remain incompletely understood. Here, we show that Npas4 (neuronal PAS-domain protein 4) transcriptionally regulates the expression of IQSEC3, a GABAergic synapse-specific guanine nucleotide-exchange factor for ADP-ribosylation factor (ARF-GEF) that directly interacts with gephyrin. Neuronal activation by an enriched environment induces Npas4-mediated upregulation of IQSEC3 protein specifically in CA1 stratum oriens layer somatostatin (SST)-expressing GABAergic interneurons. SST+ interneuron-specific knockout (KO) of Npas4 compromises synaptic transmission in these GABAergic interneurons, increases neuronal activity in CA1 pyramidal neurons, and reduces anxiety behavior, all of which are normalized by the expression of wild-type IQSEC3, but not a dominant-negative ARF-GEF-inactive mutant, in SST+ interneurons of Npas4-KO mice. Our results suggest that IQSEC3 is a key GABAergic synapse component that is directed by Npas4 and ARF activity, specifically in SST+ interneurons, to orchestrate excitation-to-inhibition balance and control anxiety-like behavior.


Subject(s)
Anxiety/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Behavior, Animal , Guanine Nucleotide Exchange Factors/metabolism , Hippocampus/metabolism , Interneurons/metabolism , Somatostatin/metabolism , Animals , GABAergic Neurons/metabolism , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic/genetics , Protein Binding , Synapses/metabolism , Synaptic Transmission , Up-Regulation
13.
iScience ; 24(2): 102037, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33532714

ABSTRACT

Gephyrin is critical for the structure, function, and plasticity of inhibitory synapses. Gephyrin mutations have been linked to various neurological disorders; however, systematic analyses of the functional consequences of these mutations are lacking. Here, we performed molecular dynamics simulations of gephyrin to predict how six reported point mutations might change the structural stability and/or function of gephyrin. Additional in silico analyses revealed that the A91T and G375D mutations reduce the binding free energy of gephyrin oligomer formation. Gephyrin A91T and G375D displayed altered clustering patterns in COS-7 cells and nullified the inhibitory synapse-promoting effect of gephyrin in cultured neurons. However, only the G375D mutation reduced gephyrin interaction with GABAA receptors and neuroligin-2 in mouse brain; it also failed to normalize deficits in GABAergic synapse maintenance and neuronal hyperactivity observed in hippocampal dentate gyrus-specific gephyrin-deficient mice. Our results provide insights into biochemical, cell-biological, and network-activity effects of the pathogenic G375D mutation.

14.
Prog Neurobiol ; 200: 101983, 2021 05.
Article in English | MEDLINE | ID: mdl-33422662

ABSTRACT

Trans-synaptic cell-adhesion molecules are critical for governing various stages of synapse development and specifying neural circuit properties via the formation of multifarious signaling pathways. Recent studies have pinpointed the putative roles of trans-synaptic cell-adhesion molecules in mediating various cognitive functions. Here, we review the literature on the roles of a diverse group of central synaptic organizers, including neurexins (Nrxns), leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs), and their associated binding proteins, in regulating properties of specific type of synapses and neural circuits. In addition, we highlight the findings that aberrant synaptic adhesion signaling leads to alterations in the structures, transmission, and plasticity of specific synapses across diverse brain areas. These results seem to suggest that proper trans-synaptic signaling pathways by Nrxns, LAR-RPTPs, and their interacting network is likely to constitute central molecular complexes that form the basis for cognitive functions, and that these complexes are heterogeneously and complexly disrupted in many neuropsychiatric and neurodevelopmental disorders.


Subject(s)
Nervous System Physiological Phenomena , Signal Transduction , Brain/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Synapses/metabolism
15.
STAR Protoc ; 1(2): 100095, 2020 09 18.
Article in English | MEDLINE | ID: mdl-33111124

ABSTRACT

Clustering of synaptic vesicles along the neuronal axons is a critical mechanism underpinning proper synaptic transmission. Here, we provide a detailed protocol for analyzing the distribution of synaptic vesicles in presynaptic boutons of cultured neurons. The protocol covers preparation of cultured neurons, expression of synaptic vesicle-enriched proteins, and quantification procedures. Utilizing neurons from postnatal transgenic mice, this method can be applied to investigate the roles of synaptic genes in regulating vesicle dynamics at synaptic sites. For complete details on the use and execution of this protocol, please refer to Han et al. (2020a).


Subject(s)
Axons/physiology , Primary Cell Culture/methods , Synaptic Vesicles/physiology , Animals , Cells, Cultured , Cluster Analysis , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Neurons/cytology , Presynaptic Terminals/physiology , Synapses/metabolism , Synaptic Transmission/physiology
16.
Mol Autism ; 11(1): 87, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33126897

ABSTRACT

BACKGROUND: Recent progress in genomics has contributed to the identification of a large number of autism spectrum disorder (ASD) risk genes, many of which encode synaptic proteins. Our understanding of ASDs has advanced rapidly, partly owing to the development of numerous animal models. Extensive characterizations using a variety of behavioral batteries that analyze social behaviors have shown that a subset of engineered mice that model mutations in genes encoding Shanks, a family of excitatory postsynaptic scaffolding proteins, exhibit autism-like behaviors. Although these behavioral assays have been useful in identifying deficits in simple social behaviors, alterations in complex social behaviors remain largely untested. METHODS: Two syndromic ASD mouse models-Shank2 constitutive knockout [KO] mice and Shank3 constitutive KO mice-were examined for alterations in social dominance and social cooperative behaviors using tube tests and automated cooperation tests. Upon naïve and salient behavioral experience, expression levels of c-Fos were analyzed as a proxy for neural activity across diverse brain areas, including the medial prefrontal cortex (mPFC) and a number of subcortical structures. FINDINGS: As previously reported, Shank2 KO mice showed deficits in sociability, with intact social recognition memory, whereas Shank3 KO mice displayed no overt phenotypes. Strikingly, the two Shank KO mouse models exhibited diametrically opposed alterations in social dominance and cooperative behaviors. After a specific social behavioral experience, Shank mutant mice exhibited distinct changes in number of c-Fos+ neurons in the number of cortical and subcortical brain regions. CONCLUSIONS: Our results underscore the heterogeneity of social behavioral alterations in different ASD mouse models and highlight the utility of testing complex social behaviors in validating neurodevelopmental and neuropsychiatric disorder models. In addition, neural activities at distinct brain regions are likely collectively involved in eliciting complex social behaviors, which are differentially altered in ASD mouse models.


Subject(s)
Cooperative Behavior , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Social Dominance , Animals , Brain/pathology , Mice, Inbred C57BL , Mice, Mutant Strains , Neurons/metabolism
17.
J Neurosci ; 40(44): 8438-8462, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33037075

ABSTRACT

Neurexins (Nrxns) and LAR-RPTPs (leukocyte common antigen-related protein tyrosine phosphatases) are presynaptic adhesion proteins responsible for organizing presynaptic machineries through interactions with nonoverlapping extracellular ligands. Here, we report that two members of the LAR-RPTP family, PTPσ and PTPδ, are required for the presynaptogenic activity of Nrxns. Intriguingly, Nrxn1 and PTPσ require distinct sets of intracellular proteins for the assembly of specific presynaptic terminals. In addition, Nrxn1α showed robust heparan sulfate (HS)-dependent, high-affinity interactions with Ig domains of PTPσ that were regulated by the splicing status of PTPσ. Furthermore, Nrxn1α WT, but not a Nrxn1α mutant lacking HS moieties (Nrxn1α ΔHS), inhibited postsynapse-inducing activity of PTPσ at excitatory, but not inhibitory, synapses. Similarly, cis expression of Nrxn1α WT, but not Nrxn1α ΔHS, suppressed the PTPσ-mediated maintenance of excitatory postsynaptic specializations in mouse cultured hippocampal neurons. Lastly, genetics analyses using male or female Drosophila Dlar and Dnrx mutant larvae identified epistatic interactions that control synapse formation and synaptic transmission at neuromuscular junctions. Our results suggest a novel synaptogenesis model whereby different presynaptic adhesion molecules combine with distinct regulatory codes to orchestrate specific synaptic adhesion pathways.SIGNIFICANCE STATEMENT We provide evidence supporting the physical interactions of neurexins with leukocyte common-antigen related receptor tyrosine phosphatases (LAR-RPTPs). The availability of heparan sulfates and alternative splicing of LAR-RPTPs regulate the binding affinity of these interactions. A set of intracellular presynaptic proteins is involved in common for Nrxn- and LAR-RPTP-mediated presynaptic assembly. PTPσ triggers glutamatergic and GABAergic postsynaptic differentiation in an alternative splicing-dependent manner, whereas Nrxn1α induces GABAergic postsynaptic differentiation in an alternative splicing-independent manner. Strikingly, Nrxn1α inhibits the glutamatergic postsynapse-inducing activity of PTPσ, suggesting that PTPσ and Nrxn1α might control recruitment of a different pool of postsynaptic machinery. Drosophila orthologs of Nrxns and LAR-RPTPs mediate epistatic interactions in controlling synapse structure and strength at neuromuscular junctions, underscoring the physiological significance in vivo.


Subject(s)
Calcium-Binding Proteins/physiology , Leukocyte Common Antigens/physiology , Neural Cell Adhesion Molecules/physiology , Animals , Calcium-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster , Excitatory Postsynaptic Potentials/physiology , Extracellular Space/metabolism , Female , HEK293 Cells , Humans , Larva , Male , Mice , Molecular Conformation , Neural Cell Adhesion Molecules/metabolism , Pregnancy , Presynaptic Terminals/metabolism , Rats , Receptor-Like Protein Tyrosine Phosphatases/genetics , Synaptic Transmission/physiology
18.
Glia ; 68(12): 2661-2673, 2020 12.
Article in English | MEDLINE | ID: mdl-32645240

ABSTRACT

IQSEC3, a guanine nucleotide exchange factor for ADP-ribosylation factors (ARF-GEFs) is specifically expressed at GABAergic synapses, and its loss increases seizure susceptibility in mice. However, the contribution of microglia to initiation and/or progression of seizures in IQSEC3-deficient mice has not been investigated. In the current study, we show that mice with hippocampal dentate gyrus (DG)-specific IQSEC3 knockdown (KD) exhibit microglial activation and death of DG granule cell. Furthermore, treatment of IQSEC3-KD mice with minocycline, an inhibitor of microglial activation, blocks DG granule neuron cell death and the occurrence of spontaneous seizures without affecting GABAergic synapse deficits or loss of somatostatin. Our results suggest that microglial activation is involved in a subset of IQSEC3-KD-induced epileptogenesis stages, and that its regulation could be an alternative strategy for managing epilepsy.


Subject(s)
Microglia , Seizures , Animals , Dentate Gyrus , Guanine Nucleotide Exchange Factors , Hippocampus , Mice , Neurons , Synapses
19.
iScience ; 23(6): 101203, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32516721

ABSTRACT

Leukocyte common antigen-related receptor tyrosine phosphatases (LAR-RPTPs) are evolutionarily conserved presynaptic organizers. The synaptic role of vertebrate LAR-RPTPs in vivo, however, remains unclear. In the current study, we analyzed the synaptic role of PTPσ using newly generated, single conditional knockout (cKO) mice targeting PTPσ. We found that the number of synapses was reduced in PTPσ cKO cultured neurons in association with impaired excitatory synaptic transmission, abnormal vesicle localization, and abnormal synaptic ultrastructure. Strikingly, loss of presynaptic PTPσ reduced neurotransmitter release prominently at excitatory synapses, concomitant with drastic reductions in excitatory innervations onto postsynaptic target areas in vivo. Furthermore, loss of presynaptic PTPσ in hippocampal CA1 pyramidal neurons had no impact on postsynaptic glutamate receptor responses in subicular pyramidal neurons. Postsynaptic PTPσ deletion had no effect on excitatory synaptic strength. Taken together, these results demonstrate that PTPσ is a bona fide presynaptic adhesion molecule that controls neurotransmitter release and excitatory inputs.

20.
Mol Brain ; 13(1): 94, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32552840

ABSTRACT

Members of the leukocyte common antigen-related receptor protein tyrosine phosphatase (LAR-RPTP) family, comprising PTPσ, PTPδ and LAR, are key hubs for presynaptic assembly and differentiation in vertebrate neurons. However, roles of individual LAR-RPTP members have not been investigated using member-specific conditional knockout mice. Here, we show that loss of PTPδ had no overt effect on synapse development in mouse cultured hippocampal neurons. Moreover, loss of PTPδ in presynaptic CA1 hippocampal neurons did not influence neurotransmitter release in subicular pyramidal neurons, suggesting that PTPδ is not critical for presynaptic function in vivo. Our results demonstrate that PTPδ is not essential for synapse maintenance or transmission, at least in the mouse hippocampus, and underscore the importance of using sophisticated genetic approaches to confirm the roles of synaptic proteins.


Subject(s)
Hippocampus/enzymology , Hippocampus/physiology , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Synapses/physiology , Synaptic Transmission/physiology , Animals , HEK293 Cells , Hippocampus/ultrastructure , Humans , Mice, Knockout , Neural Inhibition/physiology , Neurons/metabolism , Neurotransmitter Agents/metabolism , Pyramidal Cells/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/deficiency , Synapses/ultrastructure , Synaptic Vesicles/metabolism , Synaptic Vesicles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...