Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 724: 92-101, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24362110

ABSTRACT

Disturbances in myocyte calcium homeostasis are hypothesized to be one cause for cardiac arrhythmia. The full development of this hypothesis requires (i) the identification of all sources of arrhythmogenic calcium and (ii) an understanding of the mechanism(s) through which calcium initiates arrhythmia. To these ends we superfused rat left atria with the late sodium current activator type II Anemonia sulcata toxin (ATXII). This toxin prolonged atrial action potentials, induced early afterdepolarization, and provoked triggered activity. The calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphon-amide) suppressed ATXII triggered activity but its inactive congener KN-92 (2-[N-(4-methoxy benzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) did not. Neither drug affected normal atrial contractility. Calcium entry via L-type channels or calcium leakage from sarcoplasmic reticulum stores are not critical for this type of ectopy as neither verapamil ((RS)-2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl]-(methyl)amino}-2-prop-2-ylpentanenitrile) nor ryanodine affected ATXII triggered activity. By contrast, inhibitors of the voltage independent arachidonate-regulated calcium (ARC) channel and the store-operated calcium channel specifically suppressed ATXII triggered activity without normalizing action potentials or affecting atrial contractility. Inhibitors of cytosolic calcium-dependent phospholipase A2 also suppressed triggered activity suggesting that this lipase, which generates free arachidonate, plays a key role in ATXII ectopy. Thus, increased left atrial late sodium current appears to activate atrial Orai-linked ARC and store operated calcium channels, and these voltage-independent channels may be unexpected sources for the arrhythmogenic calcium that underlies triggered activity.


Subject(s)
Atrial Function/drug effects , Calcium Channels/physiology , Cardiotonic Agents/pharmacology , Cnidarian Venoms/pharmacology , Heart Atria/drug effects , Sodium/physiology , Animals , Arachidonic Acid/physiology , Benzylamines/pharmacology , Calcium Signaling , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Group IV Phospholipases A2/antagonists & inhibitors , Phospholipase A2 Inhibitors/pharmacology , Rats , Sulfonamides/pharmacology
3.
Eur J Pharmacol ; 681(1-3): 60-7, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22366212

ABSTRACT

We tested whether 2-aminoethoxydiphenyl borate (2-APB) induces arrhythmia in perfused rat hearts and whether this arrhythmia might result from the activation of voltage-independent calcium channels. Rat hearts were Langendorff perfused and beat under sinus rhythm. An isovolumic balloon inserted into the left ventricle was used to record mechanical function while bipolar electrograms were recorded from electrodes sutured to the base and the apex of hearts. Western and immunofluorescence analyses were performed on rat left ventricular protein extracts and left ventricular frozen sections, respectively. Rat ventricular myocytes express Orai 1 and Orai 3, and ventricle also contains the Orai regulator Stim1. Rat hearts (n=5) perfused with Krebs-Henseleit (KH) alone maintained sinus rhythm at 4.8 ± 0.1 Hz and stable mechanical function. By contrast, perfusing hearts (n=5) with (KH+22 µM 2-APB) provoked a period of tachycardic ectopy at rates of up to 10.8 ± 0.2 Hz. As perfusion with (KH+22 µM 2-APB) continued, the rate of spontaneous ventricular depolarization increased to 21.8 ± 1.2 Hz and became disorganized. Heart mechanical function collapsed as developed pressure decreased from 87 ± 8.8 to 3.5 ± 1.9 mm Hg. Flow rate did not change between normal (16.6 ± 0.9 ml/min) and fibrillating (17.4 ± 0.8 ml/min) hearts. The addition of 20 µM 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl) propoxy]ethyl-1H-imidazole (SKF-96365) to (KH+22 µM 2-APB) perfusates (n=4) restored sinus rhythm and heart mechanical output. These data indicate that activating myocardial voltage-independent calcium channels, possibly the Orais, may be a novel cause of ventricular arrhythmia.


Subject(s)
Boron Compounds/toxicity , Calcium Channels/metabolism , Ventricular Fibrillation/chemically induced , Animals , Fluorescent Antibody Technique , Male , Myocytes, Cardiac , ORAI1 Protein , Rats , Rats, Sprague-Dawley
4.
Eur J Pharmacol ; 668(1-2): 208-16, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21745466

ABSTRACT

Calcium transport through plasma membrane voltage-independent calcium channels is vital for signaling events in non-excitable and excitable cells. Following up on our earlier work, we tested the hypothesis that this type of calcium transport can disrupt myocardial electromechanical stability. Our Western and immunofluorescence analyses show that left atrial and ventricular myocytes express the Orai1 and the Orai3 calcium channels. Adding the Orai activator 2-aminoethoxydiphenyl borate (2-APB) to the superfusate of rat left atria causes these non-automatic muscles to contract spontaneously and persistently at rates of up to 10 Hz, and to produce normal action potentials from normal resting potentials, all in the absence of external stimulation. 2-APB likewise induces such automatic activity in superfused rat left ventricular papillary muscles, and the EC(50)s at which 2-APB induces this activity in both muscles are similar to the concentrations which activate Orais. Importantly, the voltage-independent calcium channel inhibitor 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl) propoxy]ethyl-1H-imidazole (SKF-96365) suppresses this automaticity with an IC(50) of 11 ± 0.6 µM in left atria and 6 ± 1.6 µM in papillary muscles. 1-(5-Iodonaphthalene-1-sulfonyl)-hexahydro-1,4-diazepine (ML-7), a second voltage-independent calcium channel inhibitor, and two calmodulin inhibitors also prevent 2-APB automaticity while two calmodulin-dependent protein kinase II inhibitors do not. Thus an activator of the Orai calcium channels provokes a novel type of high frequency automaticity in non-automatic heart muscle.


Subject(s)
Calcium Channels/metabolism , Heart/drug effects , Heart/physiology , Myocardium/metabolism , Animals , Atrial Function, Left/drug effects , Azepines/pharmacology , Boron Compounds/pharmacology , Calcium Channel Blockers/pharmacology , Calmodulin/antagonists & inhibitors , Gene Expression Regulation/drug effects , Heart Ventricles/cytology , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Imidazoles/pharmacology , In Vitro Techniques , Naphthalenes/pharmacology , ORAI1 Protein , Rats
5.
Nucleic Acids Res ; 39(14): 5907-25, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21498542

ABSTRACT

The nuclear factor of activated T-cells (NFAT) c1 has been shown to be essential for Ca(2+)-dependent upregulation of myosin heavy chain (MyHC) I/ß expression during skeletal muscle fiber type transformation. Here, we report activation of extracellular signal-regulated kinase (ERK) 1/2 in Ca(2+)-ionophore-treated C2C12 myotubes and electrostimulated soleus muscle. Activated ERK1/2 enhanced NFATc1-dependent upregulation of a -2.4 kb MyHCI/ß promoter construct without affecting subcellular localization of endogenous NFATc1. Instead, ERK1/2-augmented phosphorylation of transcriptional coactivator p300, promoted its recruitment to NFATc1 and increased NFATc1-DNA binding to a NFAT site of the MyHCI/ß promoter. In line, inhibition of ERK1/2 signaling abolished the effects of p300. Comparison between wild-type p300 and an acetyltransferase-deficient mutant (p300DY) indicated increased NFATc1-DNA binding as a consequence of p300-mediated acetylation of NFATc1. Activation of the MyHCI/ß promoter by p300 depends on two conserved acetylation sites in NFATc1, which affect DNA binding and transcriptional stimulation. NFATc1 acetylation occurred in Ca(2+)-ionophore treated C2C12 myotubes or electrostimulated soleus. Finally, endogenous MyHCI/ß gene expression in C2C12 myotubes was strongly inhibited by p300DY and a mutant deficient in ERK phosphorylation sites. In conclusion, ERK1/2-mediated phosphorylation of p300 is crucial for enhancing NFATc1 transactivation function by acetylation, which is essential for Ca(2+)-induced MyHCI/ß expression.


Subject(s)
Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Myosin Heavy Chains/genetics , NFATC Transcription Factors/metabolism , Transcriptional Activation , p300-CBP Transcription Factors/metabolism , Acetylation , Animals , Binding Sites , Cell Line , DNA/metabolism , HEK293 Cells , Humans , Ionophores/pharmacology , MAP Kinase Kinase 1/metabolism , MAP Kinase Signaling System , Mice , Muscle Fibers, Skeletal/enzymology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Phosphorylation , Promoter Regions, Genetic
6.
Biochim Biophys Acta ; 1813(3): 377-89, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21215280

ABSTRACT

Adaptations in the oxidative capacity of skeletal muscle cells can occur under several physiological or pathological conditions. We investigated the effect of increasing extracellular glucose concentration on the expression of markers of energy metabolism in primary skeletal muscle cells and the C2C12 muscle cell line. Growth of myotubes in 25mM glucose (high glucose, HG) compared with 5.55mM led to increases in the expression and activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a marker of glycolytic energy metabolism, while oxidative markers peroxisome proliferator-activated receptor γ coactivator 1α and citrate synthase decreased. HG induced metabolic adaptations as are seen during a slow-to-fast fiber transformation. Furthermore, HG increased fast myosin heavy chain (MHC) IId/x but did not change slow MHCI/ß expression. Protein phosphatase 2A (PP2A) was shown to mediate the effects of HG on GAPDH and MHCIId/x. Carbohydrate response element-binding protein (ChREBP), a glucose-dependent transcription factor downstream of PP2A, partially mediated the effects of glucose on metabolic markers. The glucose-induced increase in PP2A activity was associated with an increase in p38 mitogen-activated protein kinase activity, which presumably mediates the increase in MHCIId/x promoter activity. Liver X receptor, another possible mediator of glucose effects, induced only an incomplete metabolic shift, mainly increasing the expression of the glycolytic marker. Taken together, HG induces a partial slow-to-fast transformation comprising metabolic enzymes together with an increased expression of MHCIId/x. This work demonstrates a functional role for ChREBP in determining the metabolic type of muscle fibers and highlights the importance of glucose as a signaling molecule in muscle.


Subject(s)
Energy Metabolism , Gene Expression Regulation , Glucose/metabolism , Muscle Fibers, Skeletal/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cell Line , Cells, Cultured , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Liver X Receptors , Mice , Myosin Heavy Chains/genetics , Orphan Nuclear Receptors/metabolism , Promoter Regions, Genetic , Protein Phosphatase 2/metabolism , Rabbits
7.
Am J Physiol Cell Physiol ; 297(4): C1012-8, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19625607

ABSTRACT

The effect of constitutively activated proto-oncogene H-ras (H-rasQ61L) on the regulation of myosin heavy chain (MHC) promoter activities was investigated in rabbit satellite cell-derived muscle cell culture during the proliferation stage and early and later stages of differentiation, respectively. During proliferation, overexpression of H-rasQ61L did not affect basal level of activity of the slow MHCI/beta or the fast MHCIId/x promoter luciferase reporter gene construct in transient transfection assays. By contrast, H-rasQ61L affected both MHC promoter activities during differentiation, and this effect changes from inactivation after 2 days to activation after 4 days of differentiation. The activating effect of H-rasQ61L on both MHC promoters after 4 days of differentiation was significantly reduced by LY-294002, a specific inhibitor of the phosphoinositol-3-kinase (PI3K), a downstream target of Ras. Furthermore, the protein kinase Akt (protein kinase B), a downstream target of PI3k, was activated 4 days after initiation of differentiation in myotubes overexpressing H-rasQ61L. By contrast, inhibition of another Ras downstream pathway, mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated protein kinase 1/2 (MKK1/2-ERK1/2-MAPK), increased activities of both MHC promoters, indicating a suppressive role of this pathway. Moreover, the Ras-PI3K-Akt signaling pathway is involved in the activation of MHCI/beta and IId/x promoters in a later stage of differentiation of muscle cells, presumably by a known inhibiting effect of activated Akt on the MKK1/2-ERK1/2-MAPK pathway. The experiments demonstrate that during differentiation of muscle cells activated H-ras is an important regulator of MHC isoform promoter function with opposite effects during early and later stages.


Subject(s)
Cell Differentiation/physiology , Cell Proliferation , Myosin Heavy Chains/metabolism , Proto-Oncogene Proteins p21(ras)/physiology , Satellite Cells, Skeletal Muscle/physiology , Animals , Cells, Cultured , Chromones/pharmacology , Genes, ras , MAP Kinase Signaling System/physiology , Morpholines/pharmacology , Myosin Heavy Chains/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Promoter Regions, Genetic , Proto-Oncogene Proteins p21(ras)/biosynthesis , Proto-Oncogene Proteins p21(ras)/genetics , Rabbits , Satellite Cells, Skeletal Muscle/cytology , Signal Transduction
8.
J Cell Physiol ; 211(1): 138-48, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17111365

ABSTRACT

Calcium is a key element in intracellular signaling in skeletal muscle. Changes in intracellular calcium levels are thought to mediate the fast-to-slow transformation of muscle fiber type. One factor implicated in gene regulation in adult muscle is the nuclear factor of activated T-cells (NFAT) isoform c1, whose dephosphorylation by the calcium/calmodulin-dependent phosphatase calcineurin facilitates its nuclear translocation. Here, we report that differentiated C2C12 myotubes predominantly expressing fast-type MyHCII protein undergo fast-to-slow transformation following calcium-ionophore treatment, with several transcription factors and a transcriptional coactivator acting in concert to upregulate the slow myosin heavy chain (MyHC) beta promoter. Transient transfection assays demonstrated that the calcineurin/NFATc1 signaling pathway is essential for MyHCbeta promoter activation during transformation of C2C12 myotubes but is not sufficient for complete fast MyHCIId/x promoter inhibition. Along with NFATc1, myocyte enhancer factor-2D (MEF-2D) and the myogenic transcription factor MyoD transactivated the MyHCbeta promoter in calcium-ionophore-treated myotubes in a calcineurin-dependent manner. To elucidate the mechanism involved in regulating MyHCbeta gene expression, we analyzed the -2.4-kb MyHCbeta promoter construct for cis-regulatory elements. Using electrophoretic mobility shift assays (EMSAs), chromatin immunoprecipitation assays (ChIP), and nuclear complex coimmunoprecipitation (NCcoIP) assays, we demonstrated calcium-ionophore-induced binding of NFATc1 to a NFAT consensus site adjacent to a MyoD-binding E-box. At their respective binding sites, both NFATc1 and MyoD recruited the transcriptional coactivator p300, and in turn, MEF-2D bound to the MyoD complex. The calcium-ionophore-induced effects on the MyHCbeta promoter were shown to be calcineurin-dependent. Together, our findings demonstrate calcium-ionophore-induced activation of the beta MyHC promoter by NFATc1, MyoD, MEF-2D, and p300 in a calcineurin-dependent manner.


Subject(s)
Calcineurin/metabolism , MyoD Protein/metabolism , Myogenic Regulatory Factors/metabolism , Myosin Heavy Chains/genetics , NFATC Transcription Factors/metabolism , Promoter Regions, Genetic/genetics , p300-CBP Transcription Factors/metabolism , Animals , Base Sequence , Binding Sites/drug effects , Calcium/metabolism , Consensus Sequence , Ionophores/pharmacology , MEF2 Transcription Factors , Mice , Models, Biological , Molecular Sequence Data , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/drug effects , Myoblasts/cytology , Myoblasts/drug effects , Myosin Heavy Chains/metabolism , Promoter Regions, Genetic/drug effects , Protein Binding/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Transcriptional Activation/drug effects
9.
J Lipid Res ; 43(8): 1181-91, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12177162

ABSTRACT

Previously we cloned the human macrophage apolipoprotein B-48 receptor (ApoB-48R) and documented its expression in human atherosclerotic foam cells (1). Now we have identified and characterized the murine macrophage apob-48r cDNA gene sequence and its chromosomal location. The cDNA (3,615 bp) -deduced amino acid (aa) sequence (942 aa) is approximately 45% identical to the human macrophage APOB-48R, but not to other known gene families. The murine Apob-48r gene, like the human APOB-48R gene, consists of four exons interrupted by three small introns and is syntenically located on chromosome 7. Functionally significant conserved domains include an N-terminal hydrophobic domain, a glycosaminoglycan attachment site, an N-glycosylation site, and an ExxxLL internalization motif C-terminal to the putative internal transmembrane domain. Two conserved coiled-coil domains are likely involved in the spontaneous homodimerization that generates the active dimeric ligand binding species (mouse, approximately 190 kDa; human, approximately 200 kDa). Transfection of the murine apoB-48R into Chinese hamster ovary cells (CHOs) confers apoB-48R function: rapid, high-affinity, specific uptake of known triglyceride-rich lipoprotein ligands of the apoB-48R and, of note, uptake of the cholesteryl ester-rich apoB-48-containing very low density lipoproteins that accumulate in atherosclerosis-prone apoE-deficient mice. Uptake of these ligands by murine apoB-48R-transfected CHOs causes saturable, visible cellular triglyceride and cholesterol accumulation in vitro that resemble foam cells of atherosclerotic lesions. In aggregate, the data presented here and that previously published suggest that the apoE-independent murine apoB-48R pathway may contribute to the spontaneous development of atherosclerotic lesions rich in macrophage-derived foam cells observed in apoE-deficient mice, a murine model of human atherosclerosis.


Subject(s)
Apolipoproteins B/genetics , Macrophages/metabolism , Amino Acid Sequence , Animals , Apolipoprotein B-48 , Apolipoproteins B/chemistry , Base Sequence , Chromosome Mapping , DNA, Complementary , Humans , Mice , Molecular Sequence Data , Protein Conformation , RNA, Messenger/genetics , Sequence Homology, Amino Acid , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL