Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769060

ABSTRACT

Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.


Subject(s)
Antioxidants , Singlet Oxygen , Animals , Mice , Singlet Oxygen/metabolism , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Oxidation-Reduction , Oxygen/metabolism
2.
Molecules ; 27(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35408614

ABSTRACT

We previously proposed the total assessment of hydroxylinoleates (HODEs) by LC-MS/MS after saponification and reduction of the biologic samples as biomarkers to investigate pathogenesis, disease progression, and prognosis. In this study, HODE levels were estimated in aqueous humor (AH) samples from 63 eyes (41 Japanese subjects; 15 men; mean age, 77.3 ± 6.8 years) with primary open-angle glaucoma (POAG) or cataracts. The correlations between intraocular HODE levels and background parameters, including intraocular pressure (IOP), were analyzed to assess the possible involvement of oxidative stress in glaucoma pathology. Univariate analyses showed that linoleic acid (LA) (p = 0.034) and arachidonic acid (AA) (p = 0.0041) levels were associated negatively with age; 13-(Z,E)-HODE (p = 0.018) and 13-(E,E)-HODE (p = 0.021) were associated positively with IOP; 9-(Z,E)-HODE (p = 0.039), 13-(Z,E)-HODE (p = 0.021), totally assessed-HODE (t-HODE, p = 0.023), LA (p = 0.0080), and AA (p = 0.0051) were higher in eyes with glaucoma than cataract. No gender differences were seen. A mixed-effect regression model showed that higher 13-(Z,E)-HODE (p = 0.0040) and higher t-HODE (p = 0.040) were associated with glaucoma rather than cataracts; and higher levels of 13-(Z,E)-HODE/LA (p = 0.043), 13-(E,E)-HODE/LA (p = 0.042), 13-(Z,E)-HODE (p = 0.0054), and 13-(E,E)-HODE (p = 0.027) were associated with higher IOP. Linoleate-derived oxidation products were quantified successfully in AH samples from patients with glaucoma and cataracts. A free radical oxidation mechanism can be associated with IOP elevation, while enzymatic oxidation may be involved, specifically, in the pathogenesis of POAG.


Subject(s)
Cataract , Glaucoma, Open-Angle , Adolescent , Aged , Aged, 80 and over , Aqueous Humor , Chromatography, Liquid , Humans , Intraocular Pressure , Linoleic Acid , Male , Tandem Mass Spectrometry
3.
Allergol Int ; 71(3): 395-404, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35346582

ABSTRACT

BACKGROUND: Refractory asthma, which is caused by several factors including neutrophil infiltration is a serious complication of bronchial asthma. We previously reported that nerve growth factor (NGF) is involved in AHR. NGF-derived induction of hyperalgesia is dependent on neutrophils; however, this relationship remains unclear in respiratory disease. In this study, we examined the roles of neutrophils and NGF in refractory asthma. METHODS: Using intranasal house dust mite sensitization, we established a mouse model of asthma with mixed inflammation (Mix-in). AHR, NGF production and hyperinnervation of the lungs were examined with or without different inhibitory treatments. The levels of the singlet oxygen markers, 10- and 12-(Z,E)-hydroxyoctadecadienoic acids (HODE) in the lungs, were measured by liquid chromatography-tandem mass spectrometry. An in vitro experiment was also performed to evaluate the direct effect of singlet oxygen on NGF production. RESULTS: NGF production and hyperinnervation were higher in Mix-in mice than in conventional eosinophilic-asthmatic mice and were positively correlated with AHR. Asthmatic parameters were inhibited by NGF neutralizing Abs and myeloperoxidase (MPO) inhibition. The 10- and 12-(Z,E)-HODEs levels were increased in the lungs and were positively correlated with MPO activity and NGF production. NGF was produced by bronchial epithelial cells in vitro upon stimulation with singlet oxygen. CONCLUSIONS: Our findings suggest that neutrophil MPO-derived singlet oxygen induces increased NGF production, leading to AHR and 10- and 12-(Z,E)-HODEs production. These findings may help to develop new therapies targeting this mechanism and to establish a new biomarker for non-type 2 and refractory asthma.


Subject(s)
Asthma , Bronchial Hyperreactivity , Respiratory Hypersensitivity , Animals , Asthma/metabolism , Disease Models, Animal , Inflammation , Lung/metabolism , Mice , Mice, Inbred BALB C , Nerve Growth Factor/metabolism , Singlet Oxygen
4.
Materials (Basel) ; 14(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809621

ABSTRACT

Several dental materials contain silver for antibacterial effect, however the effect is relatively low. The reason for the lower antibacterial efficacy of silver is considered to be the fact that silver ions bind to chloride ions in saliva. To develop new effective silver antibacterial agents that can be useful in the mouth, we synthesized two novel amino acid (methionine or histidine)-silver complexes (Met or His-Ag) loaded with montmorillonite (Mont) and analyzed their antibacterial efficacy. At first the complexes were characterized using nuclear magnetic resonance (NMR), and amino acid-Ag complex-loaded Mont (amino acid-Ag-Mont) were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The antibacterial efficacy of these materials in dental acrylic resin was then investigated by bacterial growth measurement using a spectrophotometer. As controls, commercially available silver-loaded zeolite and silver-zirconium phosphate were also tested. Dental acrylic resin incorporating His-Ag-Mont strongly inhibited Streptococcus mutans growth. This was explained by the fact that His-Ag complex revealed the highest amounts of silver ions in the presence of chloride. The structure of the amino acid-Ag complexes affected the silver ion presence in chloride and the antibacterial efficacy. His-Ag-Mont might be used as antibacterial agents for dental materials.

5.
Sci Rep ; 10(1): 10616, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32606330

ABSTRACT

Singlet oxygen (1O2) is a type of reactive oxygen species involved in numerous physiological activities. We previously reported that 1O2-specific oxidation products are increased in patients with prediabetes, suggesting that measurement of 1O2 may be an important indicator of physiological and pathological conditions. The turnover in the generation and quenching of 1O2 is extremely rapid during biological activities owing to it high reactivity and short lifetime in solution. However, the dynamic changes in 1O2 generation in living cells have not been fully explored. In this study, we investigated whether the kinetics of 1O2 generation can be quantified using a far-red fluorescent probe for mitochondrial 1O2, Si-DMA, following addition of the 1O2 generator, endoperoxide, to mammalian cells. The kinetics of Si-DMA fluorescence intensity dose-dependently increased following treatment of mammalian living cells with endoperoxide. Alternatively, treatment with 1O2 quenchers decreased the fluorescence intensities following endoperoxide treatment. Our results indicate that the kinetics of intracellular 1O2 can be readily obtained using Si-DMA and time-lapse imaging, which provides new insights into the mechanism of 1O2 generation in mammalian cells and the exploration of 1O2 generators and quenchers.


Subject(s)
Fluorescent Dyes , Mitochondria/metabolism , Singlet Oxygen/metabolism , 3T3 Cells , Animals , Hep G2 Cells , Humans , Mice , Oxidation-Reduction , Time-Lapse Imaging
6.
Biosci Rep ; 40(4)2020 04 30.
Article in English | MEDLINE | ID: mdl-32266936

ABSTRACT

Hydroxyoctadecadienoic acids (HODEs) are produced by oxidation and reduction of linoleates. There are several regio- and stereo-isomers of HODE, and their concentrations in vivo are higher than those of other lipids. Although conformational isomers may have different biological activities, comparative analysis of intracellular function of HODE isomers has not yet been performed. We evaluated the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ), a therapeutic target for diabetes, and analyzed PPARγ agonist activity of HODE isomers. The lowest scores for docking poses of 12 types of HODE isomers (9-, 10-, 12-, and 13-HODEs) were almost similar in docking simulation of HODEs into PPARγ ligand-binding domain (LBD). Direct binding of HODE isomers to PPARγ LBD was determined by water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR experiments. In contrast, there were differences in PPARγ agonist activities among 9- and 13-HODE stereo-isomers and 12- and 13-HODE enantio-isomers in a dual-luciferase reporter assay. Interestingly, the activity of 9-HODEs was less than that of other regio-isomers, and 9-(E,E)-HODE tended to decrease PPARγ-target gene expression during the maturation of 3T3-L1 cells. In addition, 10- and 12-(Z,E)-HODEs, which we previously proposed as biomarkers for early-stage diabetes, exerted PPARγ agonist activity. These results indicate that all HODE isomers have PPARγ-binding affinity; however, they have different PPARγ agonist activity. Our findings may help to understand the biological function of lipid peroxidation products.


Subject(s)
Linoleic Acids/pharmacology , PPAR gamma/agonists , 3T3-L1 Cells , Animals , Linoleic Acids/chemistry , Lipid Peroxidation , Mice , Molecular Docking Simulation , Molecular Structure , PPAR gamma/chemistry , PPAR gamma/metabolism , Stereoisomerism , Structure-Activity Relationship
7.
Free Radic Biol Med ; 147: 61-68, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31852620

ABSTRACT

We reported previously that enzymatic and singlet oxygen-mediated fatty acid oxidation may be major oxidation pathways in subjects with primary open angle glaucoma, based on measurement of serum levels of hydroxylinoleate (HODE) and hydroxyarachidonate (HETE) isomers after reduction and saponification. In this study, we measured serum levels of HODE and HETE isomers to investigate the pathogenesis of exfoliation syndrome (EX). In total, 311 Japanese subjects comprising EX patients (n = 192) and non-glaucomatous control subjects (n = 119) were included in this study. Patients with EX (n = 192) were divided into EX with glaucoma (EXG) and EX without glaucoma (EXS) groups (n = 128 and n = 64, respectively) depending on the intraocular pressure. Total HODE (/linoleic acid) serum levels were significantly (p = 0.0426) higher in the EX group (202.7 ± 153.2 µmol/mol) than in the controls (167.1 ± 105.3 µmol/mol). Among the HODE isomers, the levels of 9-(E,E)-HODEs (p < 0.0001) and 13-(E,E)-HODEs (p < 0.0001), both free radical-mediated oxidation products, were higher in the EX and EXG groups than in the controls, whereas no significant difference was observed between EXS and controls. After adjusting for differences in demographic parameters, multivariate analyses confirmed the association between 9- and 13-(E,E)-HODEs and EX. This is the first report of a dramatic increase in free radical-mediated oxidation products related to the pathogenesis of EX, and our findings suggest that free radical-mediated oxidation can be one of the causes of deterioration in EX.


Subject(s)
Exfoliation Syndrome , Glaucoma, Open-Angle , Free Radicals , Humans , Isomerism , Oxidation-Reduction
8.
J Clin Biochem Nutr ; 65(1): 59-64, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31379415

ABSTRACT

We have previously reported that the risk of type 2 diabetes, early impaired glucose tolerance, and insulin resistance can be predicted using fasting levels of adiponectin, leptin, and insulin. Here, we aimed to evaluate the utility of hemoglobin A1c in detecting the risk of type 2 diabetes compared with other well-known biomarkers. We randomly enrolled 207 volunteers with no history of diseases, who underwent 75-g oral glucose tolerance tests and were stratified into normal, borderline, abnormal, or diabetic groups. Eighty-one participants with normal baseline levels of hemoglobin A1c (<6.0%) were included in the normal groups of both glucose tolerance and insulin resistance. Hemoglobin A1c was significantly correlated with the plasma glucose and insulin resistance index. Leptin, adiponectin, glycoalbumin, and body mass index also were correlated well with plasma glucose levels and insulin resistance index. Normal hemoglobin A1c levels with abnormal glucose tolerance and insulin resistance were noted in 85 and 67 participants, respectively. Hemoglobin A1c did not strengthen the prediction algorithm of diabetes, determined by our proposed biomarkers, leptin, adiponectin, and insulin. In conclusion, hemoglobin A1c is a surrogate biomarker for risk of diabetes, with inadequate predictive value, and should be used in combination with other biomarkers.

9.
Sci Rep ; 9(1): 2171, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30778084

ABSTRACT

We previously reported that lower systemic antioxidant capacity is involved in primary open-angle glaucoma (POAG) and exfoliation syndrome pathogeneses as measured by ferric-reducing activity. In the present study, we measured hydroxylinoleate (HODE) and hydroxyarachidonate (HETE) isomer serum levels after sample reduction and saponification to investigate POAG pathogenesis. POAG patients (n = 198) were recruited and divided into normal- and high-tension glaucoma groups (n = 84 and 114, respectively) depending on intraocular pressure. Total HODE (/linoleic acid) and HETE (/arachidonic acid) serum levels were significantly higher in the POAG group (211.9 ± 143.0 and 181.0 ± 164.1 µmol/mol, respectively) than in controls (167.1 ± 105.2 and 132.5 ± 139.7 µmol/mol, p = 0.0025 and 0.0101, respectively). The associations between HODEs/HETEs and glaucoma were further confirmed by multivariate analyses after adjusting for differences in demographic parameters. Among the HODE isomers, the levels of 9- and 13-(Z,E)-HODEs (p = 0.0014) and singlet oxygen-specific products (i.e., 10- and 12-(Z,E)-HODEs, p = 0.0345) were higher in the POAG group than in controls, while free radical-mediated oxidation-specific products (i.e., 9- and 13-(E,E)-HODEs, p = 0.0557) demonstrated a marginal difference. Enzymatic and singlet oxygen-mediated fatty acid oxidation may be major pathways of oxidation process in glaucoma subjects.


Subject(s)
Glaucoma, Open-Angle/blood , Hydroxyeicosatetraenoic Acids/blood , Linoleic Acids/blood , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Biomarkers/chemistry , Case-Control Studies , Female , Humans , Hydroxyeicosatetraenoic Acids/chemistry , Hydroxylation , Isomerism , Linoleic Acids/chemistry , Male , Middle Aged , Oxidation-Reduction , Young Adult
10.
J Clin Biochem Nutr ; 62(2): 187-194, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29610560

ABSTRACT

We previously reported that type 2 diabetes risk, early impaired glucose tolerance and insulin resistance can be predicted by measuring the fasting levels of certain biomarkers. Here we validated these findings in randomly recruited healthy volunteers (n = 101) based on biomarker expression as well as various non-invasive indices. Weight, body mass index, waist circumference and visceral fat differed between individuals with impaired fasting glucose and/or impaired glucose tolerance, and normal subjects. Fasting plasma levels of glycated hemoglobin, leptin, pro-insulin and retinol binding protein 4 differed between impaired fasting glucose/impaired glucose tolerance and normal subjects group and between newly detected diabetes and normal subjects group. Insulin resistance was correlated with fasting levels of insulin and leptin/adiponectin (r = 0.913); of insulin, retinol binding protein 4 and leptin/adiponectin (r = 0.903); and of insulin, glycated albumin, and leptin/adiponectin (r = 0.913). Type 2 diabetes risk, early impaired glucose tolerance and insulin resistance were predicted with >98% specificity and sensitivity by comparing fasting glucose levels to the estimated Matsuda Index based on fasting levels of insulin, adiponectin and leptin with or without oxidative lineolate metabolites. Non-invasive indices are slightly correlated with glucose tolerance and insulin resistance but do not increase the accuracy of predicting type 2 diabetes risk.

11.
J Oleo Sci ; 67(3): 335-344, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29459515

ABSTRACT

Ulcerative colitis is a well-known inflammatory bowel disease. Although there are drugs that are effective against this disease, the prevention and attenuation of ulcerative colitis by food rich in functional ingredients without side effects is desired because some drugs have side effects. In this study, we investigated the effects of yuzu (Citrus junos Tanaka), a citrus fruit native to northeast Asia, on a mouse dextran sulfate sodium (DSS)-induced colitis model. Mice given drinking water containing DSS showed significant weight loss, colon shortening, diarrhea, and visible fecal blood. In contrast, mice fed a diet containing 5% yuzu peel for 14 d before receiving DSS showed significant attenuation of these phenotypes. To clarify the mechanism underlying the attenuation, we investigated the anti-inflammatory and antioxidant effects of yuzu peel. We found that yuzu peel extract suppressed tumor necrosis factor-α (TNF-α) production in lipopolysaccharide (LPS)-stimulated mice and murine macrophage cell line through suppression of nuclear factor-κB (NF-κB) activation. In addition, we confirmed that yuzu peel extract had a moderate antioxidant effect. These results suggest that yuzu peel attenuates the pathologies of DSS-induced colitis by coordinately suppressing inflammation and oxidative stress against lipids in vivo.


Subject(s)
Citrus/chemistry , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Dextran Sulfate/adverse effects , Phytotherapy , Plant Extracts/administration & dosage , Administration, Oral , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Cell Line , Colitis, Ulcerative/prevention & control , Disease Models, Animal , Macrophages/metabolism , Male , Mice, Inbred BALB C , NF-kappa B/metabolism , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Tumor Necrosis Factor-alpha/metabolism
12.
J Gen Appl Microbiol ; 64(1): 26-33, 2018 Mar 27.
Article in English | MEDLINE | ID: mdl-29225285

ABSTRACT

The aim of this study was to determine the probiotic and the prebiotic-like properties of Bacillus subtilis BN, a spore-forming bacterium, also known as "natto-kin", which is used for making the Japanese fermented food, natto. We used the spores and vegetative cells of this strain and compared their effects on the growth of lactobacilli. Culture supernatant from B. subtilis BN was added to a glucose-free MRS medium used to culture lactobacilli. When lactobacilli were cultured in the supernatant-containing medium, growth was improved. This effect resulted from the digestion of starch by amylase, which was secreted by B. subtilis. Moreover, improved amylase-independent growth was also observed. Co-culture with B. subtilis improved the growth of lactobacilli, and this effect was only observed with vegetative cells; spores did not improve the growth of lactobacilli. This effect on growth was lost upon heat treatment of the vegetative cells. These results suggest that the surface protein of B. subtilis BN vegetative cells participates in the improved growth effect of lactobacilli. It is possible that B. subtilis BN could improve the intestinal flora. In addition, B. subtilis BN inhibited the growth of Salmonella enterica. Thus, it was shown that B. subtilis BN has both a probiotic and prebiotic potential. This is the first study demonstrating the selective growth improvement of indigenous intestinal lactobacilli using B. subtilis BN.


Subject(s)
Bacillus subtilis/physiology , Lactobacillus/growth & development , Microbial Interactions/physiology , Microbial Viability/drug effects , Prebiotics/microbiology , Probiotics/pharmacology , Soy Foods/microbiology , Amylases/metabolism , Bacillus subtilis/metabolism , Colony Count, Microbial , Hot Temperature/adverse effects , Salmonella enterica/growth & development , Spores, Bacterial , Starch/metabolism
13.
Arch Biochem Biophys ; 635: 96-101, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29097313

ABSTRACT

Free and ester forms of unsaturated fatty acids and cholesterol are oxidized in vivo by multiple oxidants to give diverse products. Some lipid oxidation is mediated by enzymes to selectively give specific products, while others proceed randomly to produce mixtures of many kinds of regioisomers and stereoisomers. The efficacy of antioxidants against lipid oxidation depends on the nature of the oxidants and therefore the identification of oxidant is important for understanding the roles and effects of lipid oxidation and antioxidants in vivo. In the present study, the isomer distribution of hydro(pero)xyoctadecadienoates (H(p)ODEs) and hydro(pero)xyeicosatetraenoates (H(p)ETEs), the most abundant lipid oxidation products found in human plasma, produced in the oxidation of plasma by peroxyl radicals, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen were examined. It was shown that 9- and 13-(E,E)-HODEs, 13(S)-(Z,E)-HODE, and 10- and 12-(Z,E)-HODEs were specific lipid oxidation products by free radical, 15-lipoxygenase, and singlet oxygen, respectively. The isomer distribution of HODEs produced by peroxynitrite was similar to that by peroxyl radical, suggesting that the peroxynitrite mediated lipid oxidation proceeds by free radical mechanisms. The production of HODEs and HETEs by hypochlorite was very small. HODEs may be a better biomarker than HETEs since linoleates are oxidized by simpler mechanisms than arachidonates and all the HODEs isomers can be quantified more easily. These products may be used as specific biomarkers for the identification of responsible oxidants and for the assessment of oxidant-specific lipid oxidation levels and effects of antioxidants in vivo.


Subject(s)
Arachidonate 15-Lipoxygenase/chemistry , Fatty Acids, Unsaturated/chemistry , Hydroxyeicosatetraenoic Acids/chemistry , Hypochlorous Acid/chemistry , Peroxynitrous Acid/chemistry , Plasma/chemistry , Singlet Oxygen/chemistry , Animals , Fatty Acids, Unsaturated/blood , Mice , Oxidants/blood , Oxidants/chemistry , Oxidation-Reduction , Peroxides/chemistry , Singlet Oxygen/blood , Stereoisomerism
14.
Exp Anim ; 66(4): 405-416, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-28701620

ABSTRACT

A relationship between type 2 diabetes mellitus (T2DM) and intestinal flora has been suggested since development of analysis technology for intestinal flora. An animal model of T2DM is important for investigation of T2DM. Although there are some animal models of T2DM, a comparison of the intestinal flora of healthy animals with that of T2DM animals has not yet been reported. The intestinal flora of Tsumura Suzuki Obese Diabetes (TSOD) mice was compared with that of Tsumura, Suzuki, Non Obesity (TSNO) mice in the present study. The TSOD mice showed typical type 2 diabetes symptoms, which were high-fat diet-independent. The TSOD and the TSNO mouse models were derived from the same strain, ddY. In this study, we compared the intestinal flora of TSOD mice with that if TSNO mice at 5 and 12 weeks of age. We determined that that the number of operational taxonomic units (OTUs) was significantly higher in the cecum of TSOD mice than in that of TSNO mice. The intestinal flora of the cecum and that of the feces were similar between the TSNO and the TSOD strains. The dominant bacteria in the cecum and feces were of the phyla Firmicutes and Bacteroidetes. However, the content of some bacterial species varied between the two strains. The percentage of Lactobacillus spp. within the general intestinal flora was higher in TSOD mice than in TSNO mice. In contrast, the percentages of order Bacteroidales and family Lachnospiraceae were higher in TSNO mice than in TSOD mice. Some species were observed only in TSOD mice, such as genera Turicibacter and SMB53 (family Clostridiaceae), the percentage of which were 3.8% and 2.0%, respectively. Although further analysis of the metabolism of the individual bacteria in the intestinal flora is essential, genera Turicibacter and SMB53 may be important for the abnormal metabolism of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome , Animals , Bacteroidetes/isolation & purification , Cecum/microbiology , Clostridiaceae/isolation & purification , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Firmicutes/isolation & purification , Lactobacillus/isolation & purification , Male , Mice, Obese
15.
Food Sci Nutr ; 5(3): 639-645, 2017 05.
Article in English | MEDLINE | ID: mdl-28572952

ABSTRACT

Antioxidant activities of four kinds of Japanese traditional fermented tea, Gishi-cha, Ishizuchi-kurocha, Awa-bancha, and Batabatacha, were compared. Antioxidant activity was evaluated by three parameters: copper ion reduction ability, radical trapping ability, and oxygen consumption rate. Processes of fermentation of these fermented teas are different. Goichi-cha and Ishizuchi-kurocha are produced by a two-stage fermentation process, aerobic fermentation and subsequent anaerobic fermentation. Awa-bancha is produced by anaerobic fermentation. And batabata-cha is produced by aerobic fermentation. Additionally, unfermented green tea was also employed as control. These tea leaves were extracted by boiling water and measured antioxidant activities. And concentrations of caffeine and catechins were measured in green tea and in the four kinds of fermented tea: Ishizuchi-kurocha, Goishi-cha, Awa-Bancha, and Batabata-cha. Concentrations of caffeine and catechins were lower in the fermented teas than in green tea. Among the fermented teas, epigallocatechin content was the highest in Ishizuchi-kurocha, whereas Batabata-cha hardly contained any epigallocatechin. Goichi-cha, Ishizuchi-kurocha, and Awa-bancha showed antioxidative activity regardless of measurement method. Batabatacha had hardly any antioxidative activity. Among the fermented teas, Ishizuchi-kurocha had the strongest antioxidant activity. The antioxidative activities of green tea and the four kinds of fermented tea were significantly different among each other (p < .01). Implication of this study is as follows: although contents of catechins were lower than that of green tea, three kinds of fermented tea showed antioxidative activity comparable to green tea. The results suggest that anaerobic fermentation process is beneficial at least for antioxidative activity.

16.
Food Chem Toxicol ; 107(Pt A): 129-137, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28655653

ABSTRACT

5-Hydroxy-4-phenyl-butenolide (5H4PB) is a bioactive compound with antifungal and anti-obesity properties. Although it has recently been shown that 5H4PB activates peroxisome proliferator-activated receptor-gamma (PPARγ), the effect of 5H4PB on intracellular signaling pathways has not been clarified. In this study, we found that 5H4PB activated the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway, which plays an important role in cellular defense against oxidative stress, and the subsequent upregulation of ARE-dependent cytoprotective genes, including the heme oxygenase-1, catalase, and superoxide dismutase genes, without exhibiting cytotoxicity. In addition, 5H4PB significantly attenuated intracellular ROS generation, glutathione oxidation, and DNA damage induced by hydrogen peroxide (H2O2) exposure in mouse fibroblast cells. Furthermore, we demonstrated that pretreatment with 5H4PB confers a significant cytoprotective effect against H2O2-induced cell death in mouse cultured fibroblasts and primary hepatocytes. Thus, our study demonstrated that 5H4PB enhanced cellular resistance to oxidative damage via activation of the Nrf2/ARE signaling pathway.


Subject(s)
4-Butyrolactone/analogs & derivatives , Antioxidant Response Elements/drug effects , Antioxidants/pharmacology , NF-E2-Related Factor 2/metabolism , 4-Butyrolactone/pharmacology , Animals , Cell Death/drug effects , DNA Damage/drug effects , Female , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Hydrogen Peroxide/metabolism , Mice , Mice, Inbred ICR , NF-E2-Related Factor 2/genetics , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
17.
Free Radic Res ; 51(4): 413-427, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28372523

ABSTRACT

Breakthroughs in biochemistry have furthered our understanding of the onset and progression of various diseases, and have advanced the development of new therapeutics. Oxidative stress and reactive oxygen species (ROS) are ubiquitous in biological systems. ROS can be formed non-enzymatically by chemical, photochemical and electron transfer reactions, or as the byproducts of endogenous enzymatic reactions, phagocytosis, and inflammation. Imbalances in ROS homeostasis, caused by impairments in antioxidant enzymes or non-enzymatic antioxidant networks, increase oxidative stress, leading to the deleterious oxidation and chemical modification of biomacromolecules such as lipids, DNA, and proteins. While many ROS are intracellular signaling messengers and most products of oxidative metabolisms are beneficial for normal cellular function, the elevation of ROS levels by light, hyperglycemia, peroxisomes, and certain enzymes causes oxidative stress-sensitive signaling, toxicity, oncogenesis, neurodegenerative diseases, and diabetes. Although the underlying mechanisms of these diseases are manifold, oxidative stress caused by ROS is a major contributing factor in their onset. This review summarizes the relationship between ROS and oxidative stress, with special reference to recent advancements in the detection of biomarkers related to oxidative stress. Further, we will introduce biomarkers for the early detection of neurodegenerative diseases and diabetes, with a focus on our recent work.


Subject(s)
Alzheimer Disease/metabolism , Biomarkers/metabolism , Diabetes Mellitus/metabolism , Oxidative Stress , Parkinson Disease/metabolism , Reactive Oxygen Species/metabolism , Alzheimer Disease/diagnosis , Animals , Antioxidants/metabolism , Diabetes Mellitus/diagnosis , Humans , Parkinson Disease/diagnosis
18.
Molecules ; 21(6)2016 May 30.
Article in English | MEDLINE | ID: mdl-27248987

ABSTRACT

Many polyphenols that contain more than two phenolic hydroxyl groups are natural antioxidants and can provide health benefits to humans. These polyphenols include, for example, oleuropein, hydroxytyrosol, catechin, chlorogenic acids, hesperidin, nobiletin, and isoflavones. These have been studied widely because of their strong radical-scavenging and antioxidative effects. These effects may contribute to the prevention of diseases, such as diabetes. Insulin secretion, insulin resistance, and homeostasis are important factors in the onset of diabetes, a disease that is associated with dysfunction of pancreatic ß-cells. Oxidative stress is thought to contribute to this dysfunction and the effects of antioxidants on the pathogenesis of diabetes have, therefore, been investigated. Here, we summarize the antioxidative effects of polyphenols from the perspective of their radical-scavenging activities as well as their effects on signal transduction pathways. We also describe the preventative effects of polyphenols on diabetes by referring to recent studies including those reported by us. Appropriate analytical approaches for evaluating antioxidants in studies on the prevention of diabetes are comprehensively reviewed.


Subject(s)
Antioxidants/pharmacology , Biological Products/pharmacology , Hypoglycemic Agents/pharmacology , Isoflavones/pharmacology , Polyphenols/pharmacology , Animals , Carotenoids/chemistry , Carotenoids/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Free Radicals/adverse effects , Humans , Lipid Metabolism/drug effects , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Signal Transduction/drug effects , Superoxide Dismutase/metabolism
19.
J Oleo Sci ; 64(7): 793-800, 2015.
Article in English | MEDLINE | ID: mdl-26136177

ABSTRACT

Olive leaf has great potential as a natural antioxidant, and one of its major phenolic components is oleuropein. In this study, the antioxidant activity of oleuropein against oxygen-centered radicals was measured by examining its sparing effects on the peroxyl radical-induced decay of fluorescein and pyrogallol red, in comparison with related compounds. The antioxidant capacity of oleuropein against lipid peroxidation was also assessed through its effect on the free radical-induced oxidation of methyl linoleate in a micelle system. On a molar basis, oleuropein and hydroxytyrosol inhibited the decay of fluorescein for longer than both homovanillic alcohol and the vitamin-E mimic 2-carboxy-2,5,7,8-tetramethyl-6-chromanol (Trolox), but did not suppress pyrogallol red decay in a concentration-dependent manner. Measurement of the fluorescein decay period revealed that the stoichiometric number of oleuropein and hydroxytyrosol against peroxyl radicals was twice that of Trolox, which is substantially higher than expectations based on chemical structure. Oleuropein and hydroxytyrosol were also more effective than Trolox and homovanillic alcohol at suppressing the oxidation of methyl linoleate in the micelle system. Thus, both oleuropein and hydroxytyrosol exhibit high antioxidative activity against lipid peroxidation induced by oxygen-centered radicals, but the high reactivity of phenolic/catecholic radicals makes their mechanism of action complex.


Subject(s)
Antioxidants , Free Radical Scavengers , Homovanillic Acid/pharmacology , Iridoids/pharmacology , Lipid Peroxidation/drug effects , Olea/chemistry , Phenylethyl Alcohol/analogs & derivatives , Plant Leaves/chemistry , Chromans/pharmacology , Iridoid Glucosides , Linoleic Acids , Micelles , Oxidation-Reduction/drug effects , Phenylethyl Alcohol/pharmacology
20.
J Agric Food Chem ; 63(30): 6715-22, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26165358

ABSTRACT

Oleuropein, a phenolic compound found in abundance in olive leaves, has beneficial effects on various diseases. However, it is unknown whether an oleuropein-rich diet is efficacious against type 2 diabetic phenotypes. In this study, we investigated the effects of the oleuropein-containing supplement OPIACE, whose oleuropein content exceeds 35% (w/w), on the diabetic phenotypes in type 2 diabetes model Tsumura Suzuki Obese Diabetes (TSOD) mouse. TSOD mice were fed OPIACE at 4 weeks of age, i.e., before the TSOD mice exhibited diabetic phenotypes. We revealed that OPIACE attenuated hyperglycemia and impaired glucose tolerance in TSOD mice over the long-term (from 10 to 24 weeks of age) but had no effect on obesity. Furthermore, we demonstrated that OPIACE mildly reduced oxidative stress in TSOD mice by 26.2% and attenuated anxiety-like behavioral abnormality in aged TSOD mice. The results suggest that oleuropein suppresses the progression of type 2 diabetes and diabetes-related behavioral abnormality over the long-term.


Subject(s)
Diabetes Mellitus, Type 2/diet therapy , Hyperglycemia/diet therapy , Iridoids/metabolism , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet , Disease Models, Animal , Glucose Tolerance Test , Humans , Iridoid Glucosides , Male , Mice , Mice, Obese
SELECTION OF CITATIONS
SEARCH DETAIL