Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Dis Aquat Organ ; 153: 9-16, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36727687

ABSTRACT

Eastern hellbenders Cryptobranchus alleganiensis alleganiensis, large aquatic salamanders, are declining over most of their range. The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has contributed to global amphibian declines and has been detected on eastern hellbenders, but infection intensities were lower than those of species that are more susceptible to Bd. The factors limiting Bd on hellbenders may include antifungal metabolites produced by their skin microbiota. We used a metabolite fingerprinting technique to noninvasively identify the presence, but not identity, of metabolites associated with eastern hellbenders. We surveyed the skin of wild eastern hellbenders to test whether the composition and richness (i.e. number of metabolites) of their metabolites are explained by Bd status or location. Furthermore, we surveyed for metabolites on captive eastern hellbenders to test whether metabolite compositions were different between captive and wild eastern hellbenders. Bd detection was not associated with either metabolite richness or composition. Both metabolite composition and richness differed significantly on hellbenders from different locations (i.e. states). For metabolite composition, there was a statistical interaction between location and Bd status. Metabolite richness was greater on captive eastern hellbenders compared to wild hellbenders, and metabolite compositions differed between wild and captive eastern hellbenders. The methods we employed to detect metabolite profiles effectively grouped individuals by location even though metabolite composition and richness have high levels of intraspecific variation. Understanding the drivers and functional consequences of assemblages of skin metabolites on amphibian health will be an important step toward understanding the mechanisms that result in disease vulnerability.


Subject(s)
Chytridiomycota , Urodela , Animals , Urodela/microbiology , Amphibians , Batrachochytrium , Skin/microbiology
2.
Infect Immun ; 90(3): e0002022, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35130454

ABSTRACT

Amphibian populations have been declining around the world for more than five decades, and the losses continue. Although causes are complex, major contributors to these declines are two chytrid fungi, Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, which both cause the disease termed chytridiomycosis. Previously, we showed that B. dendrobatidis impedes amphibian defenses by directly inhibiting lymphocytes in vitro and in vivo by release of soluble metabolites, including kynurenine (KYN), methylthioadenosine (MTA), and spermidine (SPD). Here, we show that B. salamandrivorans cells and cell-free supernatants also inhibit amphibian lymphocytes as well as a human T cell line. As we have shown for B. dendrobatidis, high-performance liquid chromatography (HPLC) and mass spectrometry revealed that KYN, MTA, and SPD are key metabolites found in the B. salamandrivorans supernatants. Production of inhibitory factors by B. salamandrivorans is limited to mature zoosporangia and can occur over a range of temperatures between 16°C and 26°C. Taken together, these results suggest that both pathogenic Batrachochytrium fungi have evolved similar mechanisms to inhibit lymphocytes in order to evade clearance by the amphibian immune system.


Subject(s)
Chytridiomycota , Animals , Humans , Amphibians , Batrachochytrium , Kynurenine/metabolism , Lymphocytes , Spermidine/metabolism , Urodela
3.
FEMS Microbiol Ecol ; 97(3)2021 03 10.
Article in English | MEDLINE | ID: mdl-33278302

ABSTRACT

Amphibians host diverse skin bacteria that have a role in pathogen defense, but these skin communities could change over time and impact this function. Here, we monitored individual Eastern red-spotted newts (Notophthalmus viridescens; N = 17) for 2 years in a field pond enclosure and assessed the effects of season and disturbance on skin bacterial community dynamics. We created disturbances by adding additional pond substrate to the enclosure at two timepoints. We planned to sample the skin bacterial community and metabolite profiles of each newt every 6 weeks; we ultimately sampled eight individuals at least six times. We used 16S rRNA gene amplicon sequencing to characterize the bacterial communities and HPLC-MS for metabolite profiling. We found that disturbance had a dramatic effect on skin bacterial communities and metabolite profiles, while season had an effect only using select metrics. There were seven core bacterial taxa (97% OTUs) that were found on all newts in all seasons, pre- and post-disturbance. Lastly, there was a correlation between bacterial and metabolite profiles post-disturbance, which was not observed pre-disturbance. This longitudinal study suggests that environmental disturbances can have lasting effects on skin bacterial communities that overwhelm seasonal changes, although the core bacteria remain relatively consistent over time.


Subject(s)
Amphibians , Bacteria , Animals , Bacteria/genetics , Ecosystem , Humans , Longitudinal Studies , RNA, Ribosomal, 16S/genetics , Seasons , Skin
4.
Infect Immun ; 87(5)2019 03.
Article in English | MEDLINE | ID: mdl-30833338

ABSTRACT

Amphibians have been declining around the world for more than four decades. One recognized driver of these declines is the chytrid fungus Batrachochytrium dendrobatidis, which causes the disease chytridiomycosis. Amphibians have complex and varied immune defenses against B. dendrobatidis, but the fungus also has a number of counterdefenses. Previously, we identified two small molecules produced by the fungus that inhibit frog lymphocyte proliferation, methylthioadenosine (MTA) and kynurenine (KYN). Here, we report on the isolation and identification of the polyamine spermidine (SPD) as another significant immunomodulatory molecule produced by B. dendrobatidis SPD and its precursor, putrescine (PUT), are the major polyamines detected, and SPD is required for growth. The major pathway of biosynthesis is from ornithine through putrescine to spermidine. An alternative pathway from arginine to agmatine to putrescine appears to be absent. SPD is inhibitory at concentrations of ≥10 µM and is found at concentrations between 1 and 10 µM in active fungal supernatants. Although PUT is detected in the fungal supernatants, it is not inhibitory to lymphocytes even at concentrations as high as 100 µM. Two other related polyamines, norspermidine (NSP) and spermine (SPM), also inhibit amphibian lymphocyte proliferation, but a third polyamine, cadaverine (CAD), does not. A suboptimal (noninhibitory) concentration of MTA (10 µM), a by-product of spermidine synthesis, enhances the inhibition of SPD at 1 and 10 µM. We interpret these results to suggest that B. dendrobatidis produces an "armamentarium" of small molecules that, alone or in concert, may help it to evade clearance by the amphibian immune system.


Subject(s)
Amphibians/immunology , Amphibians/metabolism , Chytridiomycota/immunology , Chytridiomycota/metabolism , Chytridiomycota/pathogenicity , Polyamines/metabolism , Spermidine/metabolism , Animals , Host-Pathogen Interactions/immunology , Immune Evasion/immunology , Immune Evasion/physiology , Mycoses/immunology , Mycoses/metabolism
5.
Microb Ecol ; 74(4): 990-1000, 2017 11.
Article in English | MEDLINE | ID: mdl-28631214

ABSTRACT

Amphibian granular glands provide a wide range of compounds on the skin that defend against pathogens and predators. We identified three bufadienolides-the steroid-like compounds arenobufagin, gamabufotalin, and telocinobufagin-from the boreal toad, Anaxyrus boreas, through liquid chromatography mass spectrometry (LC/MS). Compounds were detected both after inducing skin gland secretions and in constitutive mucosal rinses from toads. We described the antimicrobial properties of each bufadienolide against Batrachochytrium dendrobatidis (Bd), an amphibian fungal pathogen linked with boreal toad population declines. All three bufadienolides were found to inhibit Bd growth at similar levels. The maximum Bd inhibition produced by arenobufagin, gamabufotalin, and telocinobufagin were approximately 50%, in contrast to the complete Bd inhibition shown by antimicrobial skin peptides produced by some amphibian species. In addition, skin mucus samples significantly reduced Bd viability, and bufadienolides were detected in 15 of 62 samples. Bufadienolides also appeared to enhance growth of the anti-Bd bacterium Janthinobacterium lividum, and thus may be involved in regulation of the skin microbiome. Here, we localized skin bacteria within the mucus layer and granular glands of toads with fluorescent in situ hybridization. Overall, our results suggest that bufadienolides can function in antifungal defense on amphibian skin and their production is a potentially convergent trait similar to antimicrobial peptide defenses found on the skin of other species. Further studies investigating bufadienolide expression across toad populations, their regulation, and interactions with other components of the skin mucosome will contribute to understanding the complexities of amphibian immune defense.


Subject(s)
Antifungal Agents/pharmacology , Bufanolides/pharmacology , Bufonidae/metabolism , Bufonidae/microbiology , Chytridiomycota/drug effects , Animals , Bufanolides/isolation & purification
6.
Microb Ecol ; 74(1): 227-238, 2017 07.
Article in English | MEDLINE | ID: mdl-28105509

ABSTRACT

Both the structure and function of host-associated microbial communities are potentially impacted by environmental conditions, just as the outcomes of many free-living species interactions are context-dependent. Many amphibian populations have declined around the globe due to the fungal skin pathogen, Batrachochytrium dendrobatidis (Bd), but enivronmental conditions may influence disease dynamics. For instance, in Panamá, the most severe Bd outbreaks have occurred at high elevation sites. Some amphibian species harbor bacterial skin communities that can inhibit the growth of Bd, and therefore, there is interest in understanding whether environmental context could also alter these host-associated microbial communities in a way that might ultimately impact Bd dynamics. In a field survey in Panamá, we assessed skin bacterial communities (16S rRNA amplicon sequencing) and metabolite profiles (HPLC-UV/Vis) of Silverstoneia flotator from three high- and three low-elevation populations representing a range of environmental conditions. Across elevations, frogs had similar skin bacterial communities, although one lowland site appeared to differ. Interestingly, we found that bacterial richness decreased from west to east, coinciding with the direction of Bd spread through Panamá. Moreover, metabolite profiles suggested potential functional variation among frog populations and between elevations. While the frogs have similar bacterial community structure, the local environment might shape the metabolite profiles. Ultimately, host-associated community structure and function could be dependent on environmental conditions, which could ultimately influence host disease susceptibility across sites.


Subject(s)
Anura/microbiology , Bacteria/metabolism , Metabolome , Skin/microbiology , Animals , Chytridiomycota/pathogenicity , Panama , RNA, Ribosomal, 16S/genetics
7.
Appl Environ Microbiol ; 82(12): 3493-3502, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27037118

ABSTRACT

UNLABELLED: Disruptions to the microbiome can impact host health as can exposure to environmental contaminants. However, few studies have addressed how environmental contaminants impact the microbiome. We explored this question for frogs that breed in wetlands contaminated with fly ash, a by-product of coal combustion that is enriched in trace elements. We found differences in the bacterial communities among a fly ash-contaminated site and several reference wetlands. We then experimentally assessed the impacts of fly ash on the skin microbiome of adult spring peepers (Pseudacris crucifer). Frogs were exposed to fly ash in the laboratory for 12 h, the duration of a typical breeding event, and the skin microbiome was assessed after 5 days (experiment 1) or after 5 and 15 days (experiment 2). We examined bacterial community structure using 16S rRNA gene amplicon sequencing and metabolite profiles using high-pressure liquid chromatography-mass spectrometry (HPLC-MS). We found little impact as the result of acute exposure to fly ash on the bacterial communities or metabolite profiles in either experiment, suggesting that the bacterial symbiont communities of adults may be relatively resistant to brief contaminant exposure. However, housing frogs in the laboratory altered bacterial community structure in the two experiments, which supports prior research suggesting that environmental source pools are important for maintaining the amphibian skin microbiome. Therefore, for contaminants like fly ash that may alter the potential source pool of symbionts, we think it may be important to explore how contaminants affect the initial assembly of the amphibian skin microbiome in larval amphibians that develop within contaminated sites. IMPORTANCE: Animals are hosts to many symbiotic microorganisms, collectively called the microbiome, that play critical roles in host health. Therefore, environmental contaminants that alter the microbiome may impact hosts. Some of the most widespread contaminants, produced worldwide, are derived from the mining, storage, and combustion of coal for energy. Fly ash, for example, is a by-product of coal combustion. It contains compounds such as arsenic, selenium, cadmium, and strontium and is a recognized source of ground and surface water contamination. Here, we experimentally investigated the impacts of short-term fly ash exposure on the skin microbiome of spring peepers, one of many species of amphibian that sometimes breed in open fly ash disposal ponds. This research provides a look into the potential impacts of fly ash on an animal's microbiome and suggests important future directions for research on the effects of environmental contaminants on the microbiome.


Subject(s)
Anura , Bacteria/classification , Bacteria/genetics , Biota/drug effects , Environmental Pollutants/metabolism , Skin/drug effects , Animals , Cluster Analysis , Coal , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
8.
Front Microbiol ; 6: 1171, 2015.
Article in English | MEDLINE | ID: mdl-26579083

ABSTRACT

Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont microbial systems as it is in many macro-systems.

9.
Infect Immun ; 83(12): 4565-70, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26371122

ABSTRACT

Batrachochytrium dendrobatidis is a fungal pathogen in the phylum Chytridiomycota that causes the skin disease chytridiomycosis. Chytridiomycosis is considered an emerging infectious disease linked to worldwide amphibian declines and extinctions. Although amphibians have well-developed immune defenses, clearance of this pathogen from the skin is often impaired. Previously, we showed that the adaptive immune system is involved in the control of the pathogen, but B. dendrobatidis releases factors that inhibit in vitro and in vivo lymphocyte responses and induce lymphocyte apoptosis. Little is known about the nature of the inhibitory factors released by this fungus. Here, we describe the isolation and characterization of three fungal metabolites produced by B. dendrobatidis but not by the closely related nonpathogenic chytrid Homolaphlyctis polyrhiza. These metabolites are methylthioadenosine (MTA), tryptophan, and an oxidized product of tryptophan, kynurenine (Kyn). Independently, both MTA and Kyn inhibit the survival and proliferation of amphibian lymphocytes and the Jurkat human T cell leukemia cell line. However, working together, they become effective at much lower concentrations. We hypothesize that B. dendrobatidis can adapt its metabolism to release products that alter the local environment in the skin to inhibit immunity and enhance the survival of the pathogen.


Subject(s)
Adenosine/analogs & derivatives , Chytridiomycota/pathogenicity , Kynurenine/pharmacology , Mycoses/immunology , Skin/immunology , Thionucleosides/pharmacology , Tryptophan/pharmacology , Adenosine/biosynthesis , Adenosine/pharmacology , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Chytridiomycota/immunology , Chytridiomycota/metabolism , Drug Synergism , Host-Pathogen Interactions/immunology , Humans , Jurkat Cells , Kynurenine/biosynthesis , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/microbiology , Lymphocytes/pathology , Mycoses/microbiology , Mycoses/pathology , Skin/drug effects , Skin/microbiology , Skin/pathology , Thionucleosides/biosynthesis , Tryptophan/biosynthesis , Xenopus laevis
10.
Mol Ecol ; 24(7): 1628-41, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25737297

ABSTRACT

The introduction of next-generation sequencing has allowed for greater understanding of community composition of symbiotic microbial communities. However, determining the function of individual members of these microbial communities still largely relies on culture-based methods. Here, we present results on the phylogenetic distribution of a defensive functional trait of cultured symbiotic bacteria associated with amphibians. Amphibians are host to a diverse community of cutaneous bacteria and some of these bacteria protect their host from the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) by secreting antifungal metabolites. We cultured over 450 bacterial isolates from the skins of Panamanian amphibian species and tested their interactions with Bd using an in vitro challenge assay. For a subset of isolates, we also completed coculture experiments and found that culturing isolates with Bd had no effect on inhibitory properties of the bacteria, but it significantly decreased metabolite secretion. In challenge assays, approximately 75% of the bacterial isolates inhibited Bd to some extent and these inhibitory isolates were widely distributed among all bacterial phyla. Although there was no clear phylogenetic signal of inhibition, three genera, Stenotrophomonas, Aeromonas and Pseudomonas, had a high proportion of inhibitory isolates (100%, 77% and 73%, respectively). Overall, our results demonstrate that antifungal properties are phylogenetically widespread in symbiotic microbial communities of Panamanian amphibians and that some functional redundancy for fungal inhibition occurs in these communities. We hope that these findings contribute to the discovery and development of probiotics for amphibians that can mitigate the threat of chytridiomycosis.


Subject(s)
Antibiosis , Anura/microbiology , Bacteria/classification , Chytridiomycota/growth & development , Phylogeny , Animals , Bacteria/isolation & purification , DNA, Bacterial/genetics , Molecular Sequence Data , Panama , RNA, Ribosomal, 16S/genetics , Symbiosis
11.
Front Microbiol ; 5: 441, 2014.
Article in English | MEDLINE | ID: mdl-25191317

ABSTRACT

Amphibians possess beneficial skin bacteria that protect against the disease chytridiomycosis by producing secondary metabolites that inhibit the pathogen Batrachochytrium dendrobatidis (Bd). Metabolite production may be a mechanism of competition between bacterial species that results in host protection as a by-product. We expect that some co-cultures of bacterial species or strains will result in greater Bd inhibition than mono-cultures. To test this, we cultured four bacterial isolates (Bacillus sp., Janthinobacterium sp., Pseudomonas sp. and Chitinophaga arvensicola) from red-backed salamanders (Plethodon cinereus) and cultured isolates both alone and together to collect their cell-free supernatants (CFS). We challenged Bd with CFSs from four bacterial species in varying combinations. This resulted in three experimental treatments: (1) CFSs of single isolates; (2) combined CFSs of two isolates; and (3) CFSs from co-cultures. Pair-wise combinations of four bacterial isolates CFSs were assayed against Bd and revealed additive Bd inhibition in 42.2% of trials, synergistic inhibition in 42.2% and no effect in 16.6% of trials. When bacteria isolates were grown in co-cultures, complete Bd inhibition was generally observed, and synergistic inhibition occurred in four out of six trials. A metabolite profile of the most potent co-culture, Bacillus sp. and Chitinophaga arvensicola, was determined with LC-MS and compared with the profiles of each isolate in mono-culture. Emergent metabolites appearing in the co-culture were inhibitory to Bd, and the most potent inhibitor was identified as tryptophol. Thus mono-cultures of bacteria cultured from red-backed salamanders interacted synergistically and additively to inhibit Bd, and such bacteria produced emergent metabolites when cultured together, with even greater pathogen inhibition. Knowledge of how bacterial species interact to inhibit Bd can be used to select probiotics to provide amphibians with protection against Bd.

12.
Inorg Chem ; 50(20): 10353-62, 2011 Oct 17.
Article in English | MEDLINE | ID: mdl-21936530

ABSTRACT

Chlorine dioxide, an industrially important biocide and bleach, is produced rapidly and efficiently from chlorite ion in the presence of water-soluble, manganese porphyrins and porphyrazines at neutral pH under mild conditions. The electron-deficient manganese(III) tetra-(N,N-dimethyl)imidazolium porphyrin (MnTDMImP), tetra-(N,N-dimethyl)benzimidazolium (MnTDMBImP) porphyrin, and manganese(III) tetra-N-methyl-2,3-pyridinoporphyrazine (MnTM23PyPz) were found to be the most efficient catalysts for this process. The more typical manganese tetra-4-N-methylpyridiumporphyrin (Mn-4-TMPyP) was much less effective. Rates for the best catalysts were in the range of 0.24-32 TO/s with MnTM23PyPz being the fastest. The kinetics of reactions of the various ClO(x) species (e.g., chlorite ion, hypochlorous acid, and chlorine dioxide) with authentic oxomanganese(IV) and dioxomanganese(V)MnTDMImP intermediates were studied by stopped-flow spectroscopy. Rate-limiting oxidation of the manganese(III) catalyst by chlorite ion via oxygen atom transfer is proposed to afford a trans-dioxomanganese(V) intermediate. Both trans-dioxomanganese(V)TDMImP and oxoaqua-manganese(IV)TDMImP oxidize chlorite ion by 1-electron, generating the product chlorine dioxide with bimolecular rate constants of 6.30 × 10(3) M(-1) s(-1) and 3.13 × 10(3) M(-1) s(-1), respectively, at pH 6.8. Chlorine dioxide was able to oxidize manganese(III)TDMImP to oxomanganese(IV) at a similar rate, establishing a redox steady-state equilibrium under turnover conditions. Hypochlorous acid (HOCl) produced during turnover was found to rapidly and reversibly react with manganese(III)TDMImP to give dioxoMn(V)TDMImP and chloride ion. The measured equilibrium constant for this reaction (K(eq) = 2.2 at pH 5.1) afforded a value for the oxoMn(V)/Mn(III) redox couple under catalytic conditions (E' = 1.35 V vs NHE). In subsequent processes, chlorine dioxide reacts with both oxomanganese(V) and oxomanganese(IV)TDMImP to afford chlorate ion. Kinetic simulations of the proposed mechanism using experimentally measured rate constants were in agreement with observed chlorine dioxide growth and decay curves, measured chlorate yields, and the oxoMn(IV)/Mn(III) redox potential (1.03 V vs NHE). This acid-free catalysis could form the basis for a new process to make ClO(2).


Subject(s)
Chlorine Compounds/chemistry , Manganese/chemistry , Metalloporphyrins/chemistry , Oxides/chemistry , Catalysis , Chromatography, High Pressure Liquid , Electron Transport , Imidazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL