Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-498338

ABSTRACT

The clinical presentation overlap between malaria and COVID-19 poses special challenges for rapid diagnosis in febrile children. In this study, we collected RNA-seq data of children with malaria and COVID-19 infection from the public databases as raw data in fastq format paired end files. A group of six, five and two biological replicates of malaria, COVID-19 and healthy donors respectively were used for the study. We conducted differential gene expression analysis to visualize differences in the expression profiles. Using edgeR, we explored particularly gene expression levels in different phenotype groups and found that 1084 genes and 2495 genes were differentially expressed in the malaria samples and COVID-19 samples respectively when compared to healthy controls. The highly expressed gene in the COVID-19 group we found CD151 gene which is facilitates in T cell proliferation, while in the malaria group, among the highly expressed gene we identified GBP5 gene which involved in inflammatory response and response to bacterium. By comparing both malaria and COVID-19 infections, the overlap of 62 differentially expressed genes patterns were identified. Among them, three genes (ENSG00000234998, H2AC19 and TXNDC5) were highly upregulated in both infections. Strikingly, we observed 13 genes such as HBQ1, HBM, SLC7A5, SERINC2, ATP6V0C, ST6GALNAC4, RAD23A, PNPLA2, GAS2L1, TMEM86B, SLC6A8, UBALD1, RNF187 were downregulated in children with malaria and uniquely upregulated in children with COVID-19, thus may be further validated as potential biomarkers to delineate COVID-19 from malaria-related febrile infection. The hemoglobin complexes and lipid metabolism biological pathways are highly expressed in both infections. Our study provided new insights for further investigation of the biological pattern in hosts with malaria and COVID-19 coinfection.

2.
Int J Biol Macromol ; 169: 473-479, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33358779

ABSTRACT

Fibroin of the silkworm consists of fibroin heavy chain (Fib-H) with hydrophobic intermediate repeats flanked by hydrophilic N and C terminal domains (NTD and CTD, respectively), fibroin light chain (Fib-L), and P25. However, the respective roles of each polypeptide in silk processing remain largely unknown. Here, a series of transgenic silkworms with different fusion gene expression cassettes were created in order to selectively express different fluorescent fusion proteins in silk glands. The roles of different components in silk processing were investigated via observing and analyzing the movement and distribution of these proteins in the silk gland and in cocoon silk. The data showed that hydrophilic NTDs were distributed on the surface of micelles, providing sufficient electrostatic repulsion to prevent premature crystallization of silk proteins. Hydrophilic CTD==Ls ("==" represents the disulfide bond) were located on the inner layer of micelles to control the solubility of large micelles. The results presented here elucidated the underlying mechanisms of silkworm silk processing in vivo. This is significant for the development of artificial spinning technology, novel silk biomaterials, and silk gland expression systems.


Subject(s)
Bombyx/metabolism , Fibroins/chemistry , Fibroins/metabolism , Animals , Animals, Genetically Modified/genetics , Biocompatible Materials/metabolism , Bodily Secretions/metabolism , Bombyx/chemistry , Fibroins/physiology , Insect Proteins/genetics , Protein Domains/physiology , Silk/metabolism
3.
ACS Biomater Sci Eng ; 6(3): 1290-1310, 2020 03 09.
Article in English | MEDLINE | ID: mdl-33455402

ABSTRACT

The remarkable features of silk fibroin (SF) from the silkworm (Bombyx mori) have fueled its application as a candidate biomaterial for tissue regeneration and repair. For an ideal scaffold, the rate of degradation should be synchronized to match the rate of new tissue formation, and tuning this rate is essential, as diverse tissues differ in terms of regeneration period. In this Review, we discuss the factors influencing the degradability of SF, which can vary from days to several months, depending on the state of the raw material, the scaffold preparation process, morphological features, and host factors. This knowledge facilitates strategies for tuning the SF degradation rate, including manipulation of molecular weight, crystalline level, and cross-linking degree. Since these strategies have a great influence on the mechanical properties, the superiority of SF has to be sacrificed to satisfy the requirements for degradation rate. We further explore additional strategies, including the incorporation of degradation-promoting supplements such as blending with another polymer (e.g., gelatin) and the incorporation of enzyme-sensitive peptides. The information in this Review will likely aid scientists working with SF materials for the regeneration of diverse tissues.


Subject(s)
Bombyx , Fibroins , Animals , Biocompatible Materials , Gelatin , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...