Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biol Res ; 56(1): 6, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36797803

ABSTRACT

BACKGROUND: Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. RESULTS: The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb (F. auricularia) and 0.94 Gb (E. annulipes) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. CONCLUSIONS: This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.


Subject(s)
Insecta , Animals , Insecta/genetics , Sequence Analysis, DNA , Chile
2.
Biol. Res ; 56: 6-6, 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1429907

ABSTRACT

BACKGROUND: Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. RESULTS: The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb (F. auricularia) and 0.94 Gb (E. annulipes) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. CONCLUSIONS: This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.


Subject(s)
Animals , Insecta/genetics , Chile , Sequence Analysis, DNA
3.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34725254

ABSTRACT

The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Lejía transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growth-promoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codon-based methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.


Subject(s)
Plants/genetics , Altitude , Chile , Climate Change , Desert Climate , Ecosystem , Genomics/methods , Phylogeny , Soil , Soil Microbiology
4.
Blood Adv ; 5(23): 4855-4863, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34438444

ABSTRACT

Tyrosine kinase inhibitors (TKIs) have dramatically changed the survival of chronic myeloid leukemia (CML) patients, and treatment-free remission (TFR) has recently emerged as a new goal of CML treatment. The aim of this work was to develop recommendations for TKI discontinuation in Latin America (LA), outside of clinical trials. A working group of CML experts from LA discussed 22 questions regarding TFR and reached a consensus for TFR recommendations in the region. TFR is indicated in patients in first chronic phase, with typical BCR-ABL transcripts, under TKI treatment of a minimum of 5 years, in sustained deep molecular response (DMR; molecular response 4.5 [MR4.5]) for 2 years. Sustained DMR must be demonstrated on at least 4 international reporting scale quantitative polymerase chain reaction (PCR) tests, separated by at least 3 months, in the immediate prior 2 years. After second-line therapy, TFR is indicated in previously intolerant, not resistant, patients. Molecular monitoring is recommended monthly for the first 6 months, every 2 to 3 months from months 7 to 12, and every 3 months during the second year, indefinitely. Treatment should be reintroduced if major molecular response is lost. Monitoring of withdrawal syndrome, glucose levels, and lipid profile is recommended after discontinuation. After TKI reintroduction, molecular monitoring is indicated every 2 to 3 months until MR4.0 achievement; later, every 3 to 6 months. For the TFR attempt, having standardized and reliable BCR-ABL PCR tests is mandatory. These recommendations will be useful for safe discontinuation in daily practice and will benefit patients who wish to stop treatment in emergent regions, in particular, with TKI-related chronic adverse events.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Protein Kinase Inhibitors , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Polymerase Chain Reaction , Protein Kinase Inhibitors/therapeutic use , Recurrence , Remission Induction
6.
J Exp Bot ; 69(3): 619-631, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29309650

ABSTRACT

The reproductive success of plants largely depends on the correct programming of developmental phase transitions, particularly the shift from vegetative to reproductive growth. The timing of this transition is finely regulated by the integration of an array of environmental and endogenous factors. Nitrogen is the mineral macronutrient that plants require in the largest amount, and as such its availability greatly impacts on many aspects of plant growth and development, including flowering time. We found that nitrate signaling interacts with the age-related and gibberellic acid pathways to control flowering time in Arabidopsis thaliana. We revealed that repressors of flowering time belonging to the AP2-type transcription factor family including SCHLAFMUTZE (SMZ) and SCHNARCHZAPFEN (SNZ) are important regulators of flowering time in response to nitrate. Our results support a model whereby nitrate activates SMZ and SNZ via the gibberellin pathway to repress flowering time in Arabidopsis thaliana.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Flowers/growth & development , Gene Expression Regulation, Plant , Gibberellins/metabolism , Nitrates/metabolism , Transcription Factors/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Flowers/genetics , Signal Transduction , Transcription Factors/metabolism
7.
J Exp Bot ; 68(10): 2541-2551, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28369507

ABSTRACT

Nitrogen (N) is an essential macronutrient that impacts many aspects of plant physiology, growth, and development. Besides its nutritional role, N nutrient and metabolites act as signaling molecules that regulate the expression of a wide range of genes and biological processes. In this review, we describe recent advances in the understanding of components of the nitrate signaling pathway. Recent evidence posits that in one nitrate signaling pathway, nitrate sensed by NRT1.1 activates a phospholipase C activity that is necessary for increased cytosolic calcium levels. The nitrate-elicited calcium increase presumably activates calcium sensors, kinases, or phosphatases, resulting in changes in expression of primary nitrate response genes. Consistent with this model, nitrate treatments elicit proteome-wide changes in phosphorylation patterns in a wide range of proteins, including transporters, metabolic enzymes, kinases, phosphatases, and other regulatory proteins. Identifying and characterizing the function of the different players involved in this and other nitrate signaling pathways and their functional relationships is the next step to understand N responses in plants.


Subject(s)
Arabidopsis/physiology , Calcium/metabolism , Nitrates/physiology , Plant Proteins/metabolism , Signal Transduction , Phosphorylation , Plant Roots/physiology
8.
Springerplus ; 5(1): 1243, 2016.
Article in English | MEDLINE | ID: mdl-27536526

ABSTRACT

Maqui berry (Aristotelia chilensis) is a native Chilean species that produces berries that are exceptionally rich in anthocyanins and natural antioxidants. These natural compounds provide an array of health benefits for humans, making them very desirable in a fruit. At the same time, these substances also interfere with nucleic acid preparations, making RNA extraction from Maqui berry a major challenge. Our group established a method for RNA extraction of Maqui berry with a high quality RNA (good purity, good integrity and higher yield). This procedure is based on the adapted CTAB method using high concentrations of PVP (4 %) and ß-mercaptoethanol (4 %) and spermidine in the extraction buffer. These reagents help to remove contaminants such as polysaccharides, proteins, phenols and also prevent the oxidation of phenolic compounds. The high quality of RNA isolated through this method allowed its uses with success in molecular applications for this endemic Chilean fruit, such as differential expression analysis of RNA-Seq data using next generation sequencing (NGS). Furthermore, we consider that our method could potentially be used for other plant species with extremely high levels of antioxidants and anthocyanins.

9.
Viruses ; 7(4): 1685-99, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25855242

ABSTRACT

Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1). High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs): ORFs 1 and 2 shares 66%-73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV), Petuvirus genus. ORF1 encodes a movement protein (MP); ORF2 a Reverse Transcriptase (RT) and a Ribonuclease H (RNase H) domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs), AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq). Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant.


Subject(s)
Caulimoviridae/classification , Caulimoviridae/isolation & purification , Elaeocarpaceae/virology , Genome, Viral , High-Throughput Nucleotide Sequencing , Caulimoviridae/genetics , Cluster Analysis , Molecular Sequence Data , Open Reading Frames , Phylogeny , Plant Viral Movement Proteins/genetics , RNA-Directed DNA Polymerase/genetics , Ribonuclease H/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Transcription, Genetic , Virus Integration
10.
Genetics ; 198(2): 747-54, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25116137

ABSTRACT

It is widely appreciated that short tandem repeat (STR) variation underlies substantial phenotypic variation in organisms. Some propose that the high mutation rates of STRs in functional genomic regions facilitate evolutionary adaptation. Despite their high mutation rate, some STRs show little to no variation in populations. One such STR occurs in the Arabidopsis thaliana gene PFT1 (MED25), where it encodes an interrupted polyglutamine tract. Although the PFT1 STR is large (∼270 bp), and thus expected to be extremely variable, it shows only minuscule variation across A. thaliana strains. We hypothesized that the PFT1 STR is under selective constraint, due to previously undescribed roles in PFT1 function. We investigated this hypothesis using plants expressing transgenic PFT1 constructs with either an endogenous STR or synthetic STRs of varying length. Transgenic plants carrying the endogenous PFT1 STR generally performed best in complementing a pft1 null mutant across adult PFT1-dependent traits. In stark contrast, transgenic plants carrying a PFT1 transgene lacking the STR phenocopied a pft1 loss-of-function mutant for flowering time phenotypes and were generally hypomorphic for other traits, establishing the functional importance of this domain. Transgenic plants carrying various synthetic constructs occupied the phenotypic space between wild-type and pft1 loss-of-function mutants. By varying PFT1 STR length, we discovered that PFT1 can act as either an activator or repressor of flowering in a photoperiod-dependent manner. We conclude that the PFT1 STR is constrained to its approximate wild-type length by its various functional requirements. Our study implies that there is strong selection on STRs not only to generate allelic diversity, but also to maintain certain lengths pursuant to optimal molecular function.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Flowers/genetics , Microsatellite Repeats , Nuclear Proteins/genetics , Alleles , Arabidopsis/growth & development , Conserved Sequence , DNA-Binding Proteins , Flowers/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Genetic Association Studies
11.
Proc Natl Acad Sci U S A ; 109(47): 19363-7, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23129635

ABSTRACT

Tandem repeats (TRs) have extremely high mutation rates and are often considered to be neutrally evolving DNA. However, in coding regions, TR copy number mutations can significantly affect phenotype and may facilitate rapid adaptation to new environments. In several human genes, TR copy number mutations that expand polyglutamine (polyQ) tracts beyond a certain threshold cause incurable neurodegenerative diseases. PolyQ-containing proteins exist at a considerable frequency in eukaryotes, yet the phenotypic consequences of natural variation in polyQ tracts that are not associated with disease remain largely unknown. Here, we use Arabidopsis thaliana to dissect the phenotypic consequences of natural variation in the polyQ tract encoded by EARLY FLOWERING 3 (ELF3), a key developmental gene. Changing ELF3 polyQ tract length affected complex ELF3-dependent phenotypes in a striking and nonlinear manner. Some natural ELF3 polyQ variants phenocopied elf3 loss-of-function mutants in a common reference background, although they are functional in their native genetic backgrounds. To test the existence of background-specific modifiers, we compared the phenotypic effects of ELF3 polyQ variants between two divergent backgrounds, Col and Ws, and found dramatic differences. In fact, the Col-ELF3 allele, encoding the shortest known ELF3 polyQ tract, was haploinsufficient in Ws × Col F(1) hybrids. Our data support a model in which variable polyQ tracts drive adaptation to internal genetic environments.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Genes, Plant/genetics , Mutation/genetics , Peptides/genetics , Transcription Factors/genetics , Alleles , Circadian Clocks/genetics , Crosses, Genetic , Haploinsufficiency/genetics , Hybridization, Genetic , Phenotype , Tandem Repeat Sequences/genetics
12.
Plant Sci ; 183: 96-105, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22195582

ABSTRACT

Coordinate regulation of transporters at both the plasma membrane and vacuole contribute to plant cell's ability to adapt to a changing environment and play a key role in the maintenance of the chemiosmotic circuits required for cellular growth. The plasma membrane (PM) Na⁺/H⁺ antiporter (SOS1) is involved in salt tolerance, presumably in sodium extrusion; the vacuolar type I H⁺-PPase AVP1 is involved in vacuolar sodium sequestration, but its overexpression has also been shown to alter the abundance and activity of the PM H⁺-ATPase. Here we investigate the relationship between these transporters utilizing loss-of-function mutants of SOS1 (sos1) and increased expression of AVP1 (AVP1OX). Heightened expression of AVP1 enhances pyrophosphate-dependent proton pump activity, salt tolerance, ion vacuolar sequestration, K⁺ uptake capacity, root hair development, osmotic responses, and PM ATPase hydrolytic and proton pumping activities. In sos1 lines overexpressing AVP1, these phenotypes are negatively affected demonstrating that sos1 is epistatic to AVP1. Enhanced AVP1 protein levels require SOS1 and this regulation appears to be post-translational.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Epistasis, Genetic , Inorganic Pyrophosphatase/metabolism , Salt Tolerance/physiology , Sodium-Hydrogen Exchangers/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Electrophoresis, Polyacrylamide Gel , Immunoblotting , Inorganic Pyrophosphatase/genetics , Phenotype , Plant Roots/growth & development , Plant Roots/metabolism , Real-Time Polymerase Chain Reaction , Salt Tolerance/genetics , Sodium-Hydrogen Exchangers/genetics , Up-Regulation
13.
Proc Natl Acad Sci U S A ; 105(8): 2969-74, 2008 Feb 26.
Article in English | MEDLINE | ID: mdl-18287064

ABSTRACT

HSP90 is a protein chaperone particularly important in the maturation of a diverse set of proteins that regulate key steps in a multitude of biological processes. Alterations in HSP90 function produce altered phenotypes at low penetrance in natural populations. Previous work has shown that at least some of these phenotypes are due to genetic variation that remains phenotypically cryptic until it is revealed by the impairment of HSP90 function. Exposure of such "buffered" genetic polymorphisms can also be accomplished by environmental stress, linking the appearance of new phenotypes to defects in protein homeostasis. Should such polymorphisms be widespread, natural selection may be more effective at producing phenotypic change in suboptimal environments. In evaluating this hypothesis, a key unknown factor is the frequency with which HSP90-buffered polymorphisms occur in natural populations. Here, we present Arabidopsis thaliana populations suitable for genetic mapping that have constitutively reduced HSP90 levels. We employ quantitative genetic techniques to examine the HSP90-dependent polymorphisms affecting a host of plastic plant life-history traits. Our results demonstrate that HSP90-dependent natural variation is present at high frequencies in A. thaliana, with an expectation that at least one HSP90-dependent polymorphism will affect nearly every quantitative trait in progeny of two different wild lines. Hence, HSP90 is likely to occupy a central position in the translation of genotypic variation into phenotypic differences.


Subject(s)
Arabidopsis/genetics , Biological Evolution , Genetic Variation , HSP90 Heat-Shock Proteins/genetics , Phenotype , Quantitative Trait Loci/genetics , Chromosome Mapping
14.
Proc Natl Acad Sci U S A ; 105(8): 2963-8, 2008 Feb 26.
Article in English | MEDLINE | ID: mdl-18287065

ABSTRACT

Modulation of the activity of the molecular chaperone HSP90 has been extensively discussed as a means to alter phenotype in many traits and organisms. Such changes can be due to the exposure of cryptic genetic variation, which in some instances may also be accomplished by mild environmental alteration. Should such polymorphisms be widespread, natural selection may be more effective at producing phenotypic change in suboptimal environments. However, the frequency and identity of buffered polymorphisms in natural populations are unknown. Here, we employ quantitative genetic dissection of an Arabidopsis thaliana developmental response, hypocotyl elongation in the dark, to detail the underpinnings of genetic variation responsive to HSP90 modulation. We demonstrate that HSP90-dependent alleles occur in continuously distributed, environmentally responsive traits and are amenable to quantitative genetic mapping techniques. Furthermore, such alleles are frequent in natural populations and can have significant effects on natural phenotypic variation. We also find that HSP90 modulation has both general and allele-specific effects on developmental stability; that is, developmental stability is a phenotypic trait that can be affected by natural variation. However, effects of revealed variation on trait means outweigh effects of decreased developmental stability, and the HSP90-dependent trait alterations could be acted on by natural selection. Thus, HSP90 may centrally influence canalization, assimilation, and the rapid evolutionary alteration of phenotype through the concealment and exposure of cryptic genetic variation.


Subject(s)
Arabidopsis/genetics , Genetic Variation , HSP90 Heat-Shock Proteins/genetics , Phenotype , Quantitative Trait Loci , Arabidopsis/growth & development , Hypocotyl/growth & development , Plant Roots/growth & development
15.
Proc Natl Acad Sci U S A ; 102(52): 18830-5, 2005 Dec 27.
Article in English | MEDLINE | ID: mdl-16361442

ABSTRACT

Engineering drought -resistant crop plants is a critically important objective. Overexpression of the vacuolar H(+)-pyrophosphatase (H(+)-PPase) AVP1 in the model plant Arabidopsis thaliana results in enhanced performance under soil water deficits. Recent work demonstrates that AVP1 plays an important role in root development through the facilitation of auxin fluxes. With the objective of improving crop performance, we expressed AVP1 in a commercial cultivar of tomato. This approach resulted in (i) greater pyrophosphate-driven cation transport into root vacuolar fractions, (ii) increased root biomass, and (iii) enhanced recovery of plants from an episode of soil water deficit stress. More robust root systems allowed transgenic tomato plants to take up greater amounts of water during the imposed water deficit stress, resulting in a more favorable plant water status and less injury. This study documents a general strategy for improving drought resistance of crops.


Subject(s)
Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant , Genetic Engineering , Inorganic Pyrophosphatase/biosynthesis , Inorganic Pyrophosphatase/chemistry , Up-Regulation , Arabidopsis/genetics , Biological Transport , Blotting, Southern , Blotting, Western , Cell Membrane/metabolism , DNA/metabolism , Diphosphates/chemistry , Disasters , Dose-Response Relationship, Drug , Genes, Plant , Homozygote , Ion Transport , Solanum lycopersicum/genetics , Mutation , Plant Proteins/metabolism , Plant Roots , Plants, Genetically Modified , Time Factors , Transcriptional Activation , Transgenes , Water/metabolism
16.
Science ; 310(5745): 121-5, 2005 Oct 07.
Article in English | MEDLINE | ID: mdl-16210544

ABSTRACT

The transport of auxin controls developmental events in plants. Here, we report that in addition to maintaining vacuolar pH, the H+-pyrophosphatase, AVP1, controls auxin transport and consequently auxin-dependent development. AVP1 overexpression results in increased cell division at the onset of organ formation, hyperplasia, and increased auxin transport. In contrast, avp1-1 null mutants have severely disrupted root and shoot development and reduced auxin transport. Changes in the expression of AVP1 affect the distribution and abundance of the P-adenosine triphosphatase and Pinformed 1 auxin efflux facilitator, two proteins implicated in auxin distribution. Thus, AVP1 facilitates the auxin fluxes that regulate organogenesis.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Inorganic Pyrophosphatase/metabolism , Proton Pumps/metabolism , Adenosine Triphosphatases/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Biological Transport , Cell Count , Cell Proliferation , Cell Shape , Cell Wall/metabolism , Hydrogen-Ion Concentration , In Situ Hybridization , Indoleacetic Acids/pharmacology , Inorganic Pyrophosphatase/genetics , Membrane Transport Proteins/metabolism , Meristem/metabolism , Microsomes/metabolism , Mutation , Plant Leaves/cytology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/cytology , Plant Roots/growth & development , Plant Roots/metabolism , Proton Pumps/genetics , RNA Interference , Signal Transduction , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...