Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500525

ABSTRACT

(1) Background: hypertension affects approximately half of the adults in the United States (roughly 116 million). The cytochrome P450 (CYP)-mediated metabolism of arachidonic acid (AA) in the kidney has been found to play a major role in the pathogenesis of hypertension. This study examines the anti-hypertensive effect of the natural polyphenolic compound catechin (CAT) and investigates if it impacts the metabolism of AA in the kidney in comparison to captopril (CAP): a commonly used antihypertensive drug. (2) Methods: spontaneously hypertensive rats (SHR) were randomly divided into five groups. The treatment groups were administered CAT in drinking water at doses of 10 and 50 mg/kg. A positive control group received CAP at a dose of 10 mg/kg in the drinking water, and one group received both CAP and CAT at doses of 10 mg/kg and 50 mg/kg, respectively. Blood pressure was monitored weekly for five weeks. The activity of the two major enzymes involved in AA metabolism in the kidney, namely CYP4A and soluble epoxide hydrolase (sEH), were analyzed. (3) Results: CAP monotherapy was found to reduce blood pressure compared to the control untreated rats but did not demonstrate any effect on AA metabolism. Low- and high-dose CAT resisted the rise in blood pressure observed in the untreated SHR and significantly lowered blood pressure compared to the control group, respectively. Only rats treated with high CAT doses demonstrated significant inhibition of CYP4A and sEH enzyme activities. The coadministration of CAP and a high dose of CAT resulted in more pronounced blood pressure-lowering effects, but no more significant effects on AA metabolism were found compared to a high dose of CAT alone. (4) Conclusion: the modulation of AA metabolism in the kidney contributes, at least partially, to the blood pressure-lowering effect of CAT in SHR rats.


Subject(s)
Catechin , Drinking Water , Hypertension , Animals , Rats , Antihypertensive Agents/therapeutic use , Arachidonic Acid/metabolism , Blood Pressure , Captopril , Catechin/metabolism , Cytochrome P-450 CYP4A/metabolism , Cytochrome P-450 Enzyme System/metabolism , Kidney , Rats, Inbred SHR
2.
Eur J Drug Metab Pharmacokinet ; 44(6): 761-770, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31065969

ABSTRACT

BACKGROUND: Administration of quercetin (QR) has shown several health benefits in clinical and pre-clinical studies. OBJECTIVE: This study investigates the effect of dietary doses of QR on hepatic drug metabolizing enzymes in spontaneously hypertensive rats in order to investigate the potential for herb-drug interactions. METHODS: The activity and/or protein expression of selected cytochrome P450 (CYP) enzymes and microsomal epoxide hydrolase were measured in hepatic microsomes using specific probe substrates and/or polyclonal antibodies. Cytosolic fraction was utilized to measure protein level and activity of major antioxidant systems. RESULTS: The doses employed in our study did not cause any significant alterations in the activity and/or protein level of CYP1A1, CYP2A6, CYP2E, and glutathione (GSH). While the activity and apoprotein levels of CYP1A2 and CYP2B1/2 were significantly reduced by the medium and high doses of QR, the activity and/or protein level of microsomal CYP3A and cytosolic GSH-S-transferase, GSH reductase, and GSH peroxidase were significantly enhanced. Activity and protein level of CYP2C9 were significantly inhibited by all doses. Only the high-dose QR resulted in significant inhibition of both microsomal and soluble epoxide hydrolase as well as induction of the antioxidant enzymes, catalase and superoxide dismutase. CONCLUSION: This study demonstrates that dietary doses of QR may offer chemoprevention through stimulation of the endogenous antioxidant systems and inhibition of CYP enzymes involved in bioactivation of procarcinogens. However, modulation of drug metabolizing enzymes by QR could have potential for herb-drug interactions with the possibility of serious complications.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Microsomes, Liver/drug effects , Quercetin/pharmacology , Animals , Epoxide Hydrolases/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Inactivation, Metabolic , Liver/drug effects , Liver/metabolism , Male , Microsomes, Liver/metabolism , Rats , Rats, Inbred SHR/growth & development
3.
Pharmacogn Mag ; 13(Suppl 4): S895-S899, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29491651

ABSTRACT

BACKGROUND: Quercetin (QR) and thymoquinone (TQ) are herbal remedies that are currently extensively used by the general population to prevent and treat various chronic conditions. Therefore, investigating the potential of pharmacokinetic interactions caused by the concomitant use of these herbal remedies and conventional medicine is warranted to ensure patient safety. PURPOSE OF THE STUDY: This study was conducted to determine the inhibitory effect of QR and TQ, two commonly used remedies, on the activities of selected cytochrome P450 (CYP) enzymes that play an important role in drug metabolism and/or toxicology. MATERIALS AND METHODS: The in vitro studies were conducted using fluorescence-based high throughput assays using human c-DNA baculovirus expressed CYP enzymes. For measuring CYP2E1 activity, a validated High-performance liquid chromatography (HPLC) assay was utilized to measure the formation of 6-hydroxychlorzoxazone. RESULTS: The obtained half-maximum inhibitory concentration values with known positive control inhibitors of this study were comparable to the published values indicating accurate experimental techniques. Although QR did not show any significant effect on CYP1A2 and CYP2E1, it exhibited a strong inhibitory effect against CYP2D6 and a moderate effect against CYP2C19 and CYP3A4. On the other hand, TQ demonstrated a strong and a moderate inhibitory effect against CYP3A4 and CYP2C19, respectively. CONCLUSIONS: The findings of this study may indicate that consumption of QR or TQ, in the form of food or dietary supplements, with drugs that are metabolized by CYP2C19, CYP2D6, or CYP3A4 may cause significant herb-drug interactions. SUMMARY: Neither QR nor TQ has any significant inhibitory effect on the activity of CYP1A2 or CYP2E1 enzymesBoth QR and TQ have a moderate to strong inhibitory effect on CYP3A4 activityQR has a moderate inhibitory effect on CYP2C19 and a strong inhibitory effect on CYP2D6Both QR and TQ are moderate inhibitors of the CYP2C9 activity. Abbreviations used: ABT: Aminobenztriazole, BZF: 7,8 Benzoflavone, CYP: Cytochrome P450, GB: Gingko Biloba, IC50: Half-maximum inhibitory concentration, KTZ: Ketoconazole, QND: Quinidine, QR: Quercetin, TCP: Tranylcypromine, TQ: Thymoquinone.

SELECTION OF CITATIONS
SEARCH DETAIL