Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4594, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816362

ABSTRACT

X-ray-induced damage is one of the key topics in radiation chemistry. Substantial damage is attributed to low-energy electrons and radicals emerging from direct inner-shell photoionization or produced by subsequent processes. We apply multi-electron coincidence spectroscopy to X-ray-irradiated aqueous solutions of inorganic ions to investigate the production of low-energy electrons (LEEs) in a predicted cascade of intermolecular charge- and energy-transfer processes, namely electron-transfer-mediated decay (ETMD) and interatomic/intermolecular Coulombic decay (ICD). An advanced coincidence technique allows us to identify several LEE-producing steps during the decay of 1s vacancies in solvated Mg2+ ions, which escaped observation in previous non-coincident experiments. We provide strong evidence for the predicted recovering of the ion's initial state. In natural environments the recovering of the ion's initial state is expected to cause inorganic ions to be radiation-damage hot spots, repeatedly producing destructive particles under continuous irradiation.

2.
Phys Chem Chem Phys ; 26(2): 770-779, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37888897

ABSTRACT

The present study investigates the photofragmentation behavior of iodine-enhanced nitroimidazole-based radiosensitizer model compounds in their protonated form using near-edge X-ray absorption mass spectrometry and quantum mechanical calculations. These molecules possess dual functionality: improved photoabsorption capabilities and the ability to generate species that are relevant to cancer sensitization upon photofragmentation. Four samples were investigated by scanning the generated fragments in the energy regions around C 1s, N 1s, O 1s, and I 3d-edges with a particular focus on NO2+ production. The experimental summed ion yield spectra are explained using the theoretical near-edge X-ray absorption fine structure spectrum based on density functional theory. Born-Oppenheimer-based molecular dynamics simulations were performed to investigate the fragmentation processes.

3.
Phys Chem Chem Phys ; 25(37): 25603-25618, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37721108

ABSTRACT

Near-edge X-ray absorption mass spectrometry (NEXAMS) around the nitrogen and oxygen K-edges was employed on gas-phase peptides to probe the electronic transitions related to their protonation sites, namely at basic side chains, the N-terminus and the amide oxygen. The experimental results are supported by replica exchange molecular dynamics and density-functional theory and restricted open-shell configuration with single calculations to attribute the transitions responsible for the experimentally observed resonances. We studied five tailor-made glycine-based pentapeptides, where we identified the signature of the protonation site of N-terminal proline, histidine, lysine and arginine, at 406 eV, corresponding to N 1s → σ*(NHx+) (x = 2 or 3) transitions, depending on the peptides. We compared the spectra of pentaglycine and triglycine to evaluate the sensitivity of NEXAMS to protomers. Separate resonances have been identified to distinguish two protomers in triglycine, the protonation site at the N-terminus at 406 eV and the protonation site at the amide oxygen characterized by a transition at 403.1 eV.


Subject(s)
Amides , Peptides , Electronics , Nitrilotriacetic Acid , Oxygen , Protein Subunits , X-Rays
4.
J Phys Chem B ; 127(13): 3016-3025, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36972466

ABSTRACT

This work shows how the N 1s photoemission (PE) spectrum of self-associated melamine molecules in aqueous solution has been successfully rationalized using an integrated computational approach encompassing classical metadynamics simulations and quantum calculations based on density functional theory (DFT). The first approach allowed us to describe interacting melamine molecules in explicit waters and to identify dimeric configurations based on π-π and/or H-bonding interactions. Then, N 1s binding energies (BEs) and PE spectra were computed at the DFT level for all structures both in the gas phase and in an implicit solvent. While pure π-stacked dimers show gas-phase PE spectra almost identical to that of the monomer, those of the H-bonded dimers are sensibly affected by NH···NH or NH···NC interactions. Interestingly, the solvation suppresses all of the non-equivalences due to the H-bonds yielding similar PE spectra for all dimers, matching very well our measurements.

5.
Phys Chem Chem Phys ; 24(15): 8661-8671, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35356960

ABSTRACT

Non-local analogues of Auger decay are increasingly recognized as important relaxation processes in the condensed phase. Here, we explore non-local autoionization, specifically Intermolecular Coulombic Decay (ICD), of a series of aqueous-phase isoelectronic cations following 1s core-level ionization. In particular, we focus on Na+, Mg2+, and Al3+ ions. We unambiguously identify the ICD contribution to the K-edge Auger spectrum. The different strength of the ion-water interactions is manifested by varying intensities of the respective signals: the ICD signal intensity is greatest for the Al3+ case, weaker for Mg2+, and absent for weakly-solvent-bound Na+. With the assistance of ab initio calculations and molecular dynamics simulations, we provide a microscopic understanding of the non-local decay processes. We assign the ICD signals to decay processes ending in two-hole states, delocalized between the central ion and neighbouring water. Importantly, these processes are shown to be highly selective with respect to the promoted water solvent ionization channels. Furthermore, using a core-hole-clock analysis, the associated ICD timescales are estimated to be around 76 fs for Mg2+ and 34 fs for Al3+. Building on these results, we argue that Auger and ICD spectroscopy represents a unique tool for the exploration of intra- and inter-molecular structure in the liquid phase, simultaneously providing both structural and electronic information.

6.
J Phys Chem A ; 126(9): 1496-1503, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35213156

ABSTRACT

We demonstrate site-specific X-ray induced fragmentation across the sulfur L-edge of protonated cystine, the dimer of the amino acid cysteine. Ion yield NEXAFS were performed in the gas phase using electrospray ionization (ESI) in combination with an ion trap. The interpretation of the sulfur L-edge NEXAFS spectrum is supported by Restricted Open-Shell Configuration Interaction (ROCIS) calculations. The fragmentation pathway of triply charged cystine ions was modeled by Molecular Dynamics (MD) simulations. We have deduced a possible pathway of fragmentation upon excitation and ionization of S 2p electrons. The disulfide bridge breaks for resonant excitation at lower photon energies but remains intact upon higher energy resonant excitation and upon ionization of S 2p. The larger fragments initially formed subsequently break into smaller fragments.


Subject(s)
Cysteine , Cystine , Cysteine/chemistry , Cystine/chemistry , Electrons , Ions , Spectrometry, Mass, Electrospray Ionization , X-Rays
7.
J Phys Chem Lett ; 11(7): 2497-2501, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32142279

ABSTRACT

Auger spectroscopy has previously been used to study changes in the hydrogen bond network in liquid water, but to the best of our knowledge it has not been used to track such changes as a function of temperature. We show Auger spectroscopy to reflect the weakening of the hydrogen bond network upon heating. This shows that the radiation response of water, i.e., the relative propensity of the different processes occurring after radiation exposure, including femtosecond proton dynamics, depends on the temperature of the system. This proof-of-principle study further demonstrates the suitability of the technique to help elucidate information on the intermolecular structure of liquids such as water, opening the door to further temperature-dependent studies.

8.
Phys Chem Chem Phys ; 22(6): 3264-3272, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-31998901

ABSTRACT

Hydrogen bonding leads to the formation of strong, extended intermolecular networks in molecular liquids such as water. However, it is less well-known how robust the network is to environments in which surface formation or confinement effects become prominent, such as in clusters or droplets. Such systems provide a useful way to probe the robustness of the network, since the degree of confinement can be tuned by altering the cluster size, changing both the surface-to-volume ratio and the radius of curvature. To explore the formation of hydrogen bond networks in confined geometries, here we present O 1s Auger spectra of small and large clusters of water, methanol, and dimethyl ether, as well as their deuterated equivalents. The Auger spectra of the clusters and the corresponding macroscopic liquids are compared and evaluated for an isotope effect, which is due to proton dynamics within the lifetime of the core hole (proton-transfer-mediated charge-separation, PTM-CS), and can be linked to the formation of a hydrogen bond network in the system. An isotope effect is observed in water and methanol but not for dimethyl ether, which cannot donate a hydrogen bond at its oxygen site. The isotope effect, and therefore the strength of the hydrogen bond network, is more pronounced in water than in methanol. Its value depends on the average size of the cluster, indicating that confinement effects change proton dynamics in the core ionised excited state.

9.
J Phys Chem A ; 124(2): 422-429, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31833771

ABSTRACT

Recent studies on sea spray aerosol indicate an enrichment of Ca2+ in small particles, which are often thought to originate from the very surface of a water body when bubbles burst. One model to explain this observation is the formation of ion pairs between Ca2+(aq) and surface-active organic species. In this study, we have used X-ray photoelectron spectroscopy to probe aqueous salt solutions and artificial sea spray aerosol to study whether ion pairing in the liquid environment also affects the surface composition of dry aerosol. Carboxylic acids were added to the sample solutions to mimic some of the organic compounds present in natural seawater. Our results show that the formation of a core-shell structure governs the surface composition of the aerosol. The core-shell structure contrasts previous observations of the dry sea spray aerosol on substrates. As such, this may indicate that substrates can impact the morphology of the dried aerosol.

10.
J Phys Chem Lett ; 10(24): 7636-7643, 2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31747290

ABSTRACT

Recent advances in operando-synchrotron-based X-ray techniques are making it possible to address fundamental questions related to complex proton-coupled electron transfer reactions, for instance, the electrocatalytic water splitting process. However, it is still a grand challenge to assess the ability of the different techniques to characterize the relevant intermediates, with minimal interference on the reaction mechanism. To this end, we have developed a novel methodology employing X-ray photoelectron spectroscopy (XPS) in connection with the liquid-jet approach to probe the electrochemical properties of a model electrocatalyst, [RuII(bpy)2(py)(OH2)]2+, in an aqueous environment. There is a unique fingerprint of the extremely important higher-valence ruthenium-oxo species in the XPS spectra along the oxidation reaction pathway. Furthermore, a sequential method combining quantum mechanics and molecular mechanics is used to illuminate the underlying physical chemistry of such systems. This study provides the basis for the future development of in-operando XPS techniques for water oxidation reactions.

11.
Phys Chem Chem Phys ; 21(28): 15478-15486, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31259327

ABSTRACT

Complex chemical and biochemical systems are susceptible to damage from ionising radiation. However, questions remain over the extent to which such damage is influenced by the nature of the surrounding chemical environment, which can consist of both hydrophobic and hydrophilic domains. To gain fundamental insight into the first crucial mechanistic steps of radiation damage in such systems, we need to understand the initial radiation response, i.e. dynamics occurring on the same timescale as electronic relaxation, which occur in these different environments. Amphiphilic molecules contain both hydrophobic and hydrophilic domains, but the propensity for charge delocalisation and proton dynamics to occur in these different domains has been largely unexplored so far. Here, we present carbon and oxygen 1s Auger spectra for liquid methanol, one of the simplest amphiphilic molecules, as well as its fully deuterated equivalent d4-methanol, in order to explore X-ray induced charge delocalisation and proton dynamics occurring on the few femtosecond timescale. Unexpectedly, we find a similar propensity for proton dynamics to occur at both the carbon and oxygen site within the lifetime of the core hole. Our results could serve as a model for decay processes that are likely to occur in other more complex amphiphilic systems.


Subject(s)
Methanol/chemistry , Methanol/radiation effects , X-Rays , Carbon/chemistry , Oxygen/chemistry , Protons
12.
Phys Chem Chem Phys ; 20(36): 23281-23293, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30191936

ABSTRACT

Acid-base equilibria of carboxylic acids and alkyl amines in the aqueous surface region were studied using surface-sensitive X-ray photoelectron spectroscopy and molecular dynamics simulations. Solutions of these organic compounds were examined as a function of pH, concentration and chain length to investigate the distribution of acid and base form in the surface region as compared to the aqueous bulk. Results from these experiments show that the neutral forms of the studied acid-base pairs are strongly enriched in the aqueous surface region. Moreover, we show that for species with at least four carbon atoms in their alkyl-chain, their charged forms are also found to be abundant in the surface region. Using a combination of XPS and MD results, a model is proposed that effectively describes the surface composition. Resulting absolute surface concentration estimations show clearly that the total organic mole fractions in the surface region change drastically as a function of solution pH. The origin of the observed surface phenomena, hydronium/hydroxide concentrations in the aqueous surface region and why standard chemical equations, used to describe equilibria in dilute bulk solution are not valid in the aqueous surface region, are discussed in detail. The reported results are of considerable importance especially for the detailed understanding of properties of small aqueous droplets that can be found in the atmosphere.

13.
Nat Chem ; 9(7): 708-714, 2017 07.
Article in English | MEDLINE | ID: mdl-28644468

ABSTRACT

Photoionization is at the heart of X-ray photoelectron spectroscopy (XPS), which gives access to important information on a sample's local chemical environment. Local and non-local electronic decay after photoionization-in which the refilling of core holes results in electron emission from either the initially ionized species or a neighbour, respectively-have been well studied. However, electron-transfer-mediated decay (ETMD), which involves the refilling of a core hole by an electron from a neighbouring species, has not yet been observed in condensed phase. Here we report the experimental observation of ETMD in an aqueous LiCl solution by detecting characteristic secondary low-energy electrons using liquid-microjet soft XPS. Experimental results are interpreted using molecular dynamics and high-level ab initio calculations. We show that both solvent molecules and counterions participate in the ETMD processes, and different ion associations have distinctive spectral fingerprints. Furthermore, ETMD spectra are sensitive to coordination numbers, ion-solvent distances and solvent arrangement.

14.
J Phys Chem B ; 121(10): 2326-2330, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28187257

ABSTRACT

Despite its importance, the structure and dynamics of liquid water are still poorly understood in many apsects. Here, we report on the observation of optical fluorescence upon soft X-ray irradiation of liquid water. Detection of spectrally resolved fluorescence was achieved by a combination of the liquid microjet technique and fluorescence spectroscopy. We observe a genuine liquid-phase fluorescence manifested by a broad emission band in the 170-340 nm (4-7 eV) photon wavelength range. In addition, another narrower emission near 300 nm can be assigned to the fluorescence of OH (A state) in the gas phase, the emitting species being formed by Auger electrons escaping from liquid water. We argue that the newly observed broad-band emission of liquid water is relevant in search of extraterrestrial life, and we also envision the observed electron-ejection mechanism to find application for exploring solutes at liquid-vapor interfaces.

15.
Sci Rep ; 6: 24659, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27098342

ABSTRACT

L-edge soft X-ray spectroscopy has been proven to be a powerful tool to unravel the peculiarities of electronic structure of transition metal compounds in solution. However, the X-ray absorption spectrum is often probed in the total or partial fluorescence yield modes, what leads to inherent distortions with respect to the true transmission spectrum. In the present work, we combine photon- and electron-yield experimental techniques with multi-reference first principles calculations. Exemplified for the prototypical FeCl2 aqueous solution we demonstrate that the partial yield arising from the Fe3s → 2p relaxation is a more reliable probe of the absorption spectrum than the Fe3d → 2p one. For the bonding-relevant 3d → 2p channel we further provide the basis for the joint analysis of resonant photoelectron and inelastic X-ray scattering spectra. Establishing the common energy reference allows to assign both spectra using the complementary information provided through electron-out and photon-out events.

16.
J Phys Chem A ; 120(18): 2808-14, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27101344

ABSTRACT

Detection of secondary emissions, fluorescence yield (FY), or electron yield (EY), originating from the relaxation processes upon X-ray resonant absorption has been widely adopted for X-ray absorption spectroscopy (XAS) measurements when the primary absorption process cannot be probed directly in transmission mode. Various spectral distortion effects inherent in the relaxation processes and in the subsequent transportation of emitted particles (electron or photon) through the sample, however, undermine the proportionality of the emission signals to the X-ray absorption coefficient. In the present study, multiple radiative (FY) and nonradiative (EY) decay channels have been experimentally investigated on a model system, FeCl3 aqueous solution, at the excitation energy of the Fe L-edge. The systematic comparisons between the experimental spectra taken from various decay channels, as well as the comparison with the theoretically simulated Fe L-edge XA spectrum that involves only the absorption process, indicate that the detection of the Fe 3s → 2p partial fluorescence yield (PFY) gives rise to the true Fe L-edge XA spectrum. The two key characteristics generalized from this particular decay channel-zero orbital angular momentum (i.e., s orbital) and core-level emission-set a guideline for obtaining undistorted X-ray absorption spectra in the future.

17.
J Phys Chem B ; 119(33): 10750-9, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26225896

ABSTRACT

Recently, a new family of autoionization processes has been identified in aqueous phases. The processes are initiated by core-electron ionization of a solute molecule and involve proton transfer along the solute-solvent hydrogen bond. As a result, short-lived singly charged cations form with structures sharing a proton between solute and solvent molecules. These molecular transients decay by autoionization, which creates reactive dicationic species with the positive charges delocalized over the entire molecular entity. Here, we investigate the ultrafast electron and nuclear dynamics following the core ionization of hydrated ammonia and glycine. Both molecules serve as models for exploring the possible role of the nonlocal relaxation processes in the chemical reactivity at the interface between, for instance, a protein surface and aqueous solution. The nature of the postionization dynamical processes is revealed by high-accuracy Auger-electron spectroscopy measurements on liquid microjets in vacuum. The proton-transfer-mediated processes are identified by electron signals in the high-energy tail of the Auger spectra with no analogue in the Auger spectra of the corresponding gas-phase molecule. This high-energy tail is suppressed for deuterated molecules. Such an isotope effect is found to be smaller for aqueous ammonia as compared to the hydrated H2O molecule, wherein hydrogen bonds are strong. An even weaker hydrogen bonding for the hydrated amino groups in glycine results in a negligibly small proton transfer. The dynamical processes and species formed upon the nitrogen-1s core-level ionization are interpreted using methods of quantum chemistry and molecular dynamics. With the assistance of such calculations, we discuss the conditions for the proton-transfer-mediated relaxation processes to occur. We also consider the solvent librational dynamics as an alternative intermolecular ultrafast relaxation pathway. In addition, we provide experimental evidence for the umbrella-type motion in aqueous ammonia upon core ionization. This intramolecular channel proceeds in parallel with intermolecular relaxation processes in the solution.


Subject(s)
Ammonia/chemistry , Electrons , Glycine/chemistry , Water/chemistry , Hydrogen Bonding , Molecular Conformation , Molecular Dynamics Simulation , Protons , Solutions , Solvents/chemistry , Thermodynamics , X-Rays/adverse effects
18.
J Phys Chem B ; 118(48): 13833-7, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25390766

ABSTRACT

8-Oxoguanine is one of the key products of indirect radiation damage to DNA by reactive oxygen species. Here, we describe ionization of this damaged nucleobase and the corresponding nucleoside and nucleotide in aqueous phase, modeled by the nonequilibrium polarizable continuum model, establishing their lowest vertical ionization energies of 6.8-7.0 eV. We thus confirm that 8-oxoguanine has even lower ionization energy than the parental guanine, which is the canonical nucleobase with the lowest ionization energy. Therefore, it can act as a trap for the cationic hole formed by ionizing radiation and thus protect DNA from further radiation damage. We also model using time-dependent density functional theory and measure by liquid jet photoelectron spectroscopy the valence photoelectron spectrum of 8-oxoguanine in water. We show that the calculated higher lying ionization states match well the experiment which, however, is not sensitive enough to capture the electron signal corresponding to the lowest ionization process due to the low solubility of 8-oxoguanine in water.


Subject(s)
DNA/chemistry , Deoxyguanosine/chemistry , Guanine/analogs & derivatives , Guanosine Monophosphate/chemistry , Guanine/chemistry , Ions/chemistry , Models, Chemical , Quantum Theory , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...