Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Scand J Med Sci Sports ; 34(5): e14637, 2024 May.
Article in English | MEDLINE | ID: mdl-38671555

ABSTRACT

During prolonged running at moderate-to-high intensity, running economy (RE) deteriorates and attainable maximal oxygen consumption (VO2max) decreases. Whether these changes appear similarly in trained and untrained runners exercising at the same relative intensity is not clear. We recruited 10 trained runners (TR) and 10 active adults (AA), and compared RE and attainable VO2max before and after 1 h of running at 70% of VO2max. Submaximal VO2 increased more (p = 0.019) in AA (0.20 ± 0.13 L min-1) than in TR (0.07 ± 0.05 L min-1). Attainable VO2max decreased in AA (-0.21 ± 0.15 L min-1, p = 0.002), but remained unchanged in TR (-0.05 ± 0.10 L min-1, p = 0.18). Relative intensity (i.e., VO2/attainable VO2max), increased more (p = 0.001) in AA (8.3 ± 4.4%) than in TR (2.6 ± 1.9%). These results demonstrate that the ability to resist changes in RE and VO2max following prolonged running is superior in trained versus untrained runners, when exercising at the same relative intensity.


Subject(s)
Oxygen Consumption , Running , Adult , Female , Young Adult , Physical Fitness , Running/physiology , Humans , Male
2.
Exp Gerontol ; 171: 112038, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36442699

ABSTRACT

Neural factors play a critical role in the age-related decline in maximal strength and rate of force development (RFD). However, it is uncertain how the age-related attenuation in neuromuscular function may be mitigated in strength or endurance trained master athletes. In this study we applied evoked spinal motoneuron recordings to examine descending motor drive, i.e., efferent drive from supraspinal and spinal centres during maximal voluntary contraction (MVC; V-wave) and H-reflex excitability measured at 10 % MVC in older (>65 yrs) and younger (<35 yrs) strength athletes (n = 21), endurance athletes (n = 17) and untrained control participants (n = 30). Both strength (b = 0.09 [0.01-0.18], p = 0.038) and endurance training (b = 0.14 [0.04-0.23], p = 0.006) were associated with a high V-wave amplitude. This was likely explained by an elevated H-reflex excitability (b = 0.23 [0.11-0.35], p < 0.001) in endurance trained participants, which failed to be seen in strength trained participants. These contrasting neurophysiological properties were accompanied by different physiological traits; strength training was associated with high maximal strength (b = 107.5 [84.6 to 130.4] kg, p < 0.001) and RFD (b = 3171 [2248 to 4094] N‧s-1, p < 0.001), whereas endurance training was associated with elevated maximal oxygen uptake (V̇O2max; b = 13.6 [8.0-19.2] ml‧kg-1‧min-1, p < 0.001). This pattern was apparent irrespective of age, although all traits were negatively associated with advanced age (p < 0.05). In conclusion, strength trained individuals demonstrate higher descending motor drive (elevated V-wave responses), compared to age-matched untrained individuals. Endurance trained individuals also showed elevated V-wave responses, uniquely accompanied by enhanced α-motoneuron excitability and/or reduced pre/postsynaptic inhibition (elevated H-reflex responses). Since a high descending motor drive is a key component of strong muscle contractions, strength training should be emphasized to sustain the ability to carry out force-dependent tasks at older age.


Subject(s)
Endurance Training , Humans , Aged , Electromyography , Muscle, Skeletal/physiology , H-Reflex/physiology , Muscle Contraction/physiology , Adaptation, Physiological/physiology , Muscle Strength/physiology , Physical Endurance/physiology
3.
J Gerontol A Biol Sci Med Sci ; 76(2): 224-232, 2021 01 18.
Article in English | MEDLINE | ID: mdl-32614394

ABSTRACT

Strength training performed with heavy loads and maximal intended velocity is documented to enhance efferent neural drive to maximally contracting musculature in older adults. However, it remains unclear whether the neural plasticity following training result from motor skill learning or if external resistance is a prerequisite. To investigate this, we assessed electrically evoked potentials (H-reflex and V-waves normalized to maximal M-wave) and voluntary activation (VA) in 36 older adults (73 ± 4 years) randomized to 3 weeks of plantar flexion strength training, with (maximal strength training [MST]) or without (unloaded ballistic training [UBT]) heavy external loading (90% of one repetition maximum), or a control group. Both training groups aimed to execute the concentric phase of movement as fast and forcefully as possible. The MST group improved maximal voluntary contraction (MVC) and rate of force development (RFD) by 18% ± 13% (p = .001; Hedges g = 0.66) and 35% ± 17% (p < .001; g = 0.94), respectively, and this was different (MVC: p = .013; RFD: p = .001) from the UBT group which exhibited a 7% ± 8% (p = .033; g = 0.32) increase in MVC and a tendency to increase RFD (p = .119; g = 0.22). Concomitant improvements in efferent neural drive (Vmax/Msup ratio: 0.14 ± 0.08 to 0.24 ± 0.20; p = .010) and a tendency towards increased VA (79% ± 9% to 84% ± 5%; p = .098), were only apparent after MST. No changes were observed in Hmax/Mmax ratio for the groups. In conclusion, external loading during exercise training appears to be a prerequisite for efferent neural drive enhancement in older adults. Thus, strength training with heavy loads should be recommended to counteract the typically observed age-related decline in motoneuron firing frequency and recruitment.


Subject(s)
Aging/physiology , Resistance Training/methods , Aged , Efferent Pathways/physiology , Electromyography , Evoked Potentials, Motor/physiology , Humans , Male , Motor Neurons/physiology , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle Stretching Exercises/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Recruitment, Neurophysiological/physiology
4.
J Geriatr Phys Ther ; 42(3): 115-122, 2019.
Article in English | MEDLINE | ID: mdl-28786909

ABSTRACT

BACKGROUND AND PURPOSE: Physical function is shown to decline with age. However, how long-term strength training may attenuate the age-related limitation in functional tasks with various force demands is unclear. METHODS: In a cross-sectional study, we assessed maximal muscle strength, initial and late phase rate of force development (RFD), as well as 4 tests of functional performance in 11 strength-trained master athletes (MAs), 11 recreationally active older adults (AEs), 10 sedentary older adults (SOAs), and 9 moderately active young controls. Functional performance was divided into 2 categories: more force-demanding (chair-rising ability and stair-climbing power) and less force-demanding (habitual walking speed and 1-leg standing) tasks. RESULTS: MA exhibited 75%, 45%, and 26% higher leg press maximal strength compared with SOA, AE, and young, respectively (P < .01). MA leg press RFD was not different from young, but was higher compared to AE and SOA during both the initial (0-50 ms: 104%-177%, P < .05) and late phase (100-200 ms: 37%-52%, P < .05) of muscle contraction. MA also showed better mean (SD) performance compared with AE and SOA (P < .05) in more force-demanding functional tasks; chair-rising ability (MA: 6.2 (1.2) seconds; AE: 8.6 (1.8) seconds; SOA: 9.7 (3.0) seconds; young: 6.5 (1.0) seconds) and stair-climbing power (MA: 701 (161) W; AE: 556 (104) W; SOA: 495 (116) W; young: 878 (126) W). No differences (mean (SD)) were observed between MA and AE in less force-demanding tasks, but both groups were superior (P < .05) compared with SOA in walking speed (MA: 1.49 (0.21) m·s; AE: 1.56 (0.17) m·s; SOA: 1.27 (0.22) m·s; young: 1.62 (0.22) m·s) and balance test completion (MA: 45%; AE: 45%; SOA: 0%; young: 100%). CONCLUSION: Our results reveal that maintaining a high muscle force-generating capacity into older age is related to beneficial effects on functional performance, which may not be achieved with recreational activity, thus highlighting strength training as an important contribution to healthy aging.


Subject(s)
Aging/physiology , Muscle Strength , Muscle, Skeletal/physiology , Physical Functional Performance , Resistance Training , Age Factors , Aged , Cross-Sectional Studies , Exercise Test , Humans , Male , Muscle Contraction , Resistance Training/methods , Sedentary Behavior , Time Factors , Walking Speed , Young Adult
5.
J Neurophysiol ; 120(6): 2868-2876, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30332319

ABSTRACT

The search for the most potent strength training intervention is continuous. Maximal strength training (MST) yields large improvements in force-generating capacity (FGC), largely attributed to efferent neural drive enhancement. However, it remains elusive whether eccentric overload, before the concentric phase, may augment training-induced neuromuscular adaptations. A total of 53 23 ± 3 (SD)-yr-old untrained males were randomized to either a nontraining control group (CG) or one of two training groups performing leg press strength training with linear progression, three times per week for 8 wk. The first training group carried out MST with four sets of four repetitions at ~90% one-repetition maximum (1RM) in both action phases. The second group performed MST with an augmented eccentric load of 150% 1RM (eMST). Measurements were taken of 1RM and rate of force development (RFD), countermovement jump (CMJ) performance, and evoked potentials recordings [V-wave (V) and H-reflex (H) normalized to M-wave (M) in musculus soleus]. 1RM increased from 133 ± 16 to 157 ± 23 kg and 123 ± 18 to 149 ± 22 kg and CMJ by 2.3 ± 3.6 and 2.2 ± 3.7cm for MST and eMST, respectively (all P < 0.05). Early, late, and maximal RFD increased in both groups [634-1,501 N/s (MST); 644-2,111 N/s (eMST); P < 0.05]. These functional improvements were accompanied by increased V/M-ratio (MST: 0.34 ± 0.11 to 0.42 ± 14; eMST: .36 ± 0.14 to 0.43 ± 13; P < 0.05). Resting H/M-ratio remained unchanged. Training-induced improvements did not differ. All increases, except for CMJ, were different from the CG. MST is an enterprise for large gains in FGC and functional performance. Eccentric overload did not induce additional improvements, suggesting firing frequency and motor unit recruitment during MST may be maximal. NEW & NOTEWORTHY This is the first study to apply evoked potential recordings to investigate effects on efferent neural drive following high-intensity strength training with and without eccentric overload in a functionally relevant lower extremity exercise. We document that eccentric overload does not augment improvements in efferent neural drive or muscle force-generating capacity, suggesting that high-intensity concentric loads may maximally tax firing frequency and motor unit recruitment.


Subject(s)
Muscle, Skeletal/physiology , Resistance Training/methods , Adult , Evoked Potentials, Motor , H-Reflex , Humans , Leg/physiology , Male , Recruitment, Neurophysiological
6.
J Gerontol A Biol Sci Med Sci ; 73(5): 596-602, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29126270

ABSTRACT

Efferent neural drive during strong muscle contractions is attenuated with age, even after life-long strength training. However, it is unknown if this deterioration may impede contralateral neural plasticity, and limit the clinical value of unilateral strength training. We assessed muscle force-generating capacity, evoked potentials recordings (V-wave and H-reflex normalized to M-wave; V/M-ratio and H/M-ratio) and voluntary activation (VA) in the plantar flexors of the contralateral limb following unilateral maximal strength training (MST) with the dominant limb for 3 weeks (nine sessions). Twenty-three 73 ± 4(SD) year old males were randomized to a MST group (N = 11), exercising with an intensity of ~90% of maximal strength, or a control group (CG, N = 12). MST improved contralateral maximal strength (107.6 ± 27.0 to 119.1 ± 34.8 Nm; 10%) and rate of force development (197.3 ± 54.1 to 232.8 ± 77.7 Nm s-1; 18%) (both p < .05). These strength gains were associated with (r = 0.465-0.608) an enhanced soleus V/M-ratio (0.12 ± 0.09 to 0.21 ± 0.17) and VA (79.5 ± 5.1 to 83.3 ± 5.2%) (all p < .05). H/M-ratio (10% maximal strength) remained unaltered after MST, and no changes were apparent in the CG. In conclusion, cross-limb effects in older adults are regulated by efferent neural drive enhancement, and advocate the clinical relevance of MST to improve neuromuscular function in individuals with conditions that results in unilateral strength reductions.


Subject(s)
Aging/physiology , Efferent Pathways/physiology , Leg/physiology , Muscle, Skeletal/physiology , Neuronal Plasticity/physiology , Resistance Training , Adaptation, Physiological , Aged , Evoked Potentials, Motor , Humans , Male , Muscle Contraction/physiology , Muscle Strength/physiology , Norway , Surveys and Questionnaires
7.
Med Sci Sports Exerc ; 49(1): 78-85, 2017 01.
Article in English | MEDLINE | ID: mdl-27501361

ABSTRACT

PURPOSE: High-intensity interval training (HIIT) is documented to yield effective improvements in the cardiovascular system and be an excellent strategy for healthy aging. However, it is not determined how age may affect the training response of key components of aerobic endurance. METHODS: We recruited 72 males (mean ± SD, weight = 84.9 ± 12.9 kg, height = 180.4 ± 5.8 cm) and 22 females (weight = 76.0 ± 17.2 kg, height = 171.2 ± 6.7 cm) from 20 to 70+ yr with a training status typical for their age group and divided them into six decade cohorts. The participants followed supervised training with a targeted intensity of 90%-95% of maximal HR (HRmax) three times a week for 8 wk. RESULTS: After HIIT, all age groups increased (P < 0.001-P = 0.004) maximal oxygen consumption (V˙O2max) with 0.39 ± 0.20 (20-29 yr), 0.28 ± 0.21 (30-39 yr), 0.36 ± 0.08 (40-49 yr), 0.34 ± 0.27 (50-59 yr), 0.33 ± 0.23 (60-69 yr), and 0.34 ± 0.14 (70+ yr) L·min, respectively. These 9%-13% improvements were not significantly different between the age groups. In contrast to age, the percentage improvements after HIIT were inversely associated with baseline training status (r = 0.66, P < 0.001). HRmax was not altered within the respective age cohorts, but the two oldest cohorts exhibited a tendency (P = 0.07) to increase HRmax in contrast to a training-induced decrease in the younger cohorts. CONCLUSION: In healthy individuals with an aerobic capacity typical for what is observed in the population, the training response is likely not affected by age in a short-term training intervention but may rather be affected by the initial training status. These findings imply that individuals across age all have a great potential for cardiovascular improvements, and that HIIT may be used as an excellent strategy for healthy aging.


Subject(s)
High-Intensity Interval Training , Oxygen Consumption/physiology , Physical Endurance/physiology , Adult , Age Factors , Aged , Female , Humans , Male , Middle Aged , Physical Fitness , Sedentary Behavior , Young Adult
8.
J Appl Physiol (1985) ; 121(2): 415-23, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27339181

ABSTRACT

Recently, we documented age-related attenuation of efferent drive to contracting skeletal muscle. It remains elusive if this indication of reduced muscle strength is present with lifelong strength training. For this purpose, we examined evoked potentials in the calf muscles of 11 [71 ± 4 (SD) yr] strength-trained master athletes (MA) contrasted with 10 (71 ± 4 yr) sedentary (SO) and 11 (73 ± 6 yr) recreationally active (AO) old subjects, as well as 9 (22 ± 2 yr) young controls. As expected, MA had higher leg press maximal strength (MA, 185 ± 32 kg; AO, 128 ± 15 kg; SO, 106 ± 11 kg; young, 147 ± 22 kg, P < 0.01) and rate of force development (MA, 5,588 ± 2,488 N/s; AO, 2,156 ± 1,100 N/s; SO, 2,011 ± 825 N/s; young, 3,663 ± 1,140 N/s, P < 0.05) than the other groups. MA also exhibited higher musculus soleus normalized V waves during maximal voluntary contractions (MVC) [maximal V wave amplitude/maximal M wave during MVC (Vsup/Msup); 0.28 ± 0.15] than AO (0.13 ± 0.06, P < 0.01) and SO (0.11 ± 0.05, P < 0.01), yet lower than young (0.45 ± 0.12, P < 0.01). No differences were apparent between the old groups in H reflex recorded at rest or during MVC [maximal H reflex amplitude/maximal M wave during rest (Hmax/Mmax); maximal H reflex amplitude during MVC/maximal M wave during MVC (Hsup/Msup)], and all were lower (P < 0.01) than young. MA (34.4 ± 2.1 ms) had shorter (P < 0.05) H reflex latency compared with AO (36.4 ± 3.7 ms) and SO (37.3 ± 3.2 ms), but longer (P < 0.01) than young (30.7 ± 2.0 ms). Using interpolated twitch analysis, MA (89 ± 7%) had plantar flexion voluntary activation similar to young (90 ± 6%), and this was higher (P < 0.05), or tended to be higher (P = 0.06-0.09), than SO (83 ± 10%) and AO (84 ± 5%). These observations suggest that lifelong strength training has a protective effect against age-related attenuation of efferent drive. In contrast, no beneficial effect seems to derive from habitual recreational activity, indicating that strength training may be particularly beneficial for counteracting age-related loss of neuromuscular function.


Subject(s)
Efferent Pathways/physiology , H-Reflex/physiology , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Resistance Training/methods , Sports/physiology , Adolescent , Adult , Aged , Cross-Sectional Studies , Evoked Potentials, Motor/physiology , Humans , Male , Physical Exertion/physiology , Young Adult
9.
Article in English | MEDLINE | ID: mdl-27042312

ABSTRACT

BACKGROUND: Patients with substance use disorder (SUD) suffer from multiple health and psychosocial problems. Because poor physical capacities following an inactive lifestyle may indeed contribute to these problems, physical training is often suggested as an attractive supplement to conventional SUD treatment. Strength training is shown to increase muscle strength and effectively improve health and longevity. Therefore we investigated the feasibility and effect of a maximal strength training intervention for SUD patients in clinical treatment. METHODS: 16 males and 8 females were randomized into a training group (TG) and a control group (CG). The TG performed lower extremities maximal strength training (85-90 % of 1 repetition maximum (1RM)) 3 times a week for 8 weeks, while the CG participated in conventional clinical activities. RESULTS: The TG increased hack squat 1RM (88 ± 54 %), plantar flexion 1RM (26 ± 20 %), hack squat rate of force development (82 ± 29 %) and peak force (11 ± 5 %). Additionally, the TG improved neural function, expressed as voluntary V-wave (88 ± 83 %). The CG displayed no change in any physical parameters. The TG also reduced anxiety and insomnia, while the CG reduced anxiety. CONCLUSION: Maximal strength training was feasible for SUD patients in treatment, and improved multiple risk factors for falls, fractures and lifestyle related diseases. As conventional treatment appears to have no effect on muscle strength, systematic strength training should be implemented as part of clinical practice. TRIAL REGESTRATION: ClinicalTrials.gov Identifier: NCT02218970 (August 14, 2014).

10.
Age (Dordr) ; 37(3): 9784, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25940749

ABSTRACT

Although reductions in resting H-reflex responses and maximal firing frequency suggest that reduced efferent drive may limit muscle strength in elderly, there are currently no reports of V-wave measurements in elderly, reflecting the magnitude of efferent output to the muscle during maximal contraction. Furthermore, it is uncertain whether potential age-related neural deficiencies can be restored by resistance training. We assessed evoked reflex recordings in the triceps surae muscles during rest and maximal voluntary contraction (MVC), rate of force development (RFD), and muscle mass in seven elderly (74 ± 6 years) males before and after 8 weeks of heavy resistance training, contrasted by seven young (24 ± 4 years) male controls. At baseline, m. soleus (SOL) V/M ratio (0.124 ± 0.082 vs. 0.465 ± 0.197, p < 0.05) and H/M ratio (0.379 ± 0.044 vs. 0.486 ± 0.101 p = 0.07) were attenuated in elderly compared to young. Also, SOL H-reflex latency (33.29 ± 2.41 vs. 30.29 ± 0.67 ms, p < 0.05) was longer in elderly. The reduced neural drive was, despite similar leg muscle mass (10.7 ± 1.2 vs. 11.5 ± 1.4 kg), mirrored by lower MVC (158 ± 48 vs. 240 ± 54 Nm, p < 0.05) and RFD (294 ± 126 vs. 533 ± 123 Nm s(-1), p < 0.05) in elderly. In response to training SOL V/M ratio (0.184 ± 0.092, p < 0.05) increased in the elderly, yet only to a level ~40 % of the young. This was accompanied by increased MVC (190 ± 70 Nm, p < 0.05) and RFD (401 ± 147 Nm[Symbol: see text]s(-1), p < 0.05) to levels of ~80 % and ~75 % of the young. H/M ratio remained unchanged. These findings suggest that changes in supraspinal activation play a significant role in the age-related changes in muscle strength. Furthermore, this motor system impairment can to some extent be improved by heavy resistance training.


Subject(s)
Aging/physiology , H-Reflex/physiology , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle, Skeletal/innervation , Resistance Training , Aged , Aged, 80 and over , Case-Control Studies , Evoked Potentials/physiology , Humans , Male , Muscle, Skeletal/physiology
11.
Biomed Res Int ; 2014: 616935, 2014.
Article in English | MEDLINE | ID: mdl-24724089

ABSTRACT

Patients with substance use disorder (SUD) suffer a higher risk of cardiovascular disease and other lifestyle diseases compared to the general population. High intensity training has been shown to effectively reduce this risk, and therefore we aimed to examine the feasibility and effect of such training in SUD patients in clinical treatment in the present study. 17 males and 7 females (32 ± 8 yr) in treatment were randomized to either a training group (TG), treadmill interval training in 4 × 4 minutes at 90-95% of maximal heart rate, 3 days a week for 8 weeks, or a conventional rehabilitation control group (CG). Baseline values for both groups combined at inclusion were 44 ± 8 (males) and 34 ± 9 (females) mL · min(-1) · kg(-1), respectively. 9/12 and 7/12 patients completed the TG and CG, respectively. Only the TG significantly improved (15 ± 7%) their maximal oxygen consumption (VO2max), from 42.3 ± 7.2 mL · min(-1) · kg(-1) at pretest to 48.7 ± 9.2 mL · min(-1) · kg(-1) at posttest. No between-group differences were observed in work economy, and level of insomnia (ISI) or anxiety and depression (HAD), but a significant within-group improvement in depression was apparent for the TG. High intensity training was feasible for SUD patients in treatment. This training form should be implemented as a part of the rehabilitation since it, in contrast to the conventional treatment, represents a risk reduction for cardiovascular disease and premature death.


Subject(s)
Exercise Therapy/methods , Substance-Related Disorders/rehabilitation , Adult , Female , Humans , Male , Substance-Related Disorders/metabolism , Substance-Related Disorders/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL