Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Drug Targets ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38712374

ABSTRACT

Considering that lung cancer is a leading global perpetrator, novel treatment approaches must be investigated. Due to the broad spectrum of lung cancer, conventional therapies including chemotherapy, radiotherapy, and surgeries, are not always effective and can have adverse consequences. The present study's overarching objective was to enhance the development of a personalized vaccine for targeted lung cancer therapy. Vaccination functions by eliciting a strong and targeted immune response defense by taking advantage of the specific antigens that are expressed by lung cancer cells. Crucial antigens associated with tumor cells have been identified with the recognition of the genetic and immunological circumstances of lung cancer in this review. The vaccine includes these antigens to prime the immune system, directing it toward recognizing and attacking cancerous cells. In this review, we have addressed the possible benefits of a targeted vaccine strategy, which include a reduction in off-target effects and an improvement in health outcomes for patients. These studies highlight the promise of a tailored vaccine in a novel way for the treatment of lung cancer. The integration of molecular profiling and immunological insights offers a rationale for the design and implementation of personalized vaccines. While challenges exist, the promise of improved treatment outcomes and reduced side effects positions targeted vaccine therapy as a compelling avenue for advancing lung cancer treatment.

2.
Chem Biol Drug Des ; 103(4): e14515, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570333

ABSTRACT

Neurodegenerative disorders are devastating disorders characterized by gradual loss of neurons and cognition or mobility impairment. The common pathological features of these diseases are associated with the accumulation of misfolded or aggregation of proteins. The pivotal roles of autophagy and proteostasis in maintaining cellular health and preventing the accumulation of misfolded proteins, which are associated with neurodegenerative diseases like Huntington's disease (HD), Alzheimer's disease (AD), and Parkinson's disease (PD). This article presents an in-depth examination of the interplay between autophagy and proteostasis, highlighting how these processes cooperatively contribute to cellular homeostasis and prevent pathogenic protein aggregate accumulation. Furthermore, the review emphasises the potential therapeutic implications of targeting autophagy and proteostasis to mitigate neurodegenerative diseases. While advancements in research hold promise for developing novel treatments, the article also addresses the challenges and complexities associated with modulating these intricate cellular pathways. Ultimately, advancing understanding of the underlying mechanism of autophagy and proteostasis in neurodegenerative disorders provides valuable insights into potential therapeutic avenues and future research directions.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Proteostasis , Proteins/metabolism , Huntington Disease/drug therapy , Huntington Disease/metabolism , Autophagy
3.
Curr Pharm Des ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38571355

ABSTRACT

BACKGROUND: The prognosis for primary brain tumors, like other CNS tumors, can vary greatly based on several factors, such as treatment history, age and gender at diagnosis, ethnic background, and treatment plan. MATERIALS AND METHOD: A systematic review approach was used to gather relevant data from PubMed, ScienceDirect, Google Scholar, and other sources. RESULTS: The survival rate of primary brain tumors and other CNS tumors appears to be correlated with several variables, including treatment history, gender, age at evaluation, race/ethnicity, and treatment regimen; this emphasizes the importance of routinely updating epidemiological data on primary brain tumors to advance biological understanding. CONCLUSION: This study draws attention to the variations in the median survival times of the various kinds of primary brain tumors, with oligodendroglioma having the longest median survival time (199 months, or approximately 16.6 years) and glioblastoma having the shortest (8 months).

4.
Curr Pharm Des ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38482624

ABSTRACT

Renal disease is a medical condition that poses a potential threat to the life of an individual and is related to substantial morbidity and mortality rates in clinical environments. The aetiology of this condition is influenced by multiple factors, and its incidence tends to increase with progressive aging. Although supportive therapy and kidney transplantation have potential advantages, they also have limitations in terms of mitigating the progression of KD. Despite significant advancements in the domain of supportive therapy, mortality rates in patients continue to increase. Due to their ability to self-renew and multidirectionally differentiate, stem cell therapy has been shown to have tremendous potential in the repair of the diseased kidney. MSCs (Mesenchymal stem cells) are a cell population that is extensively distributed and can be located in various niches throughout an individual's lifespan. The cells in question are characterised by their potential for indefinite replication and their aptitude for undergoing differentiation into fully developed cells of mesodermal origin under laboratory conditions. It is essential to emphasize that MSCs have demonstrated a favorable safety profile and efficacy as a therapeutic intervention for renal diseases in both preclinical as well as clinical investigations. MSCs have been found to slow the advancement of kidney disease, and this impact is thought to be due to their control over a number of physiological processes, including immunological response, tubular epithelial- mesenchymal transition, oxidative stress, renal tubular cell death, and angiogenesis. In addition, MSCs demonstrate recognised effectiveness in managing both acute and chronic kidney diseases via paracrine pathways. The proposal to utilise a therapy that is based on stem-cells as an effective treatment has been put forward in search of discovering novel therapies to promote renal regeneration. Preclinical researchers have demonstrated that various types of stem cells can provide advantages in acute and chronic kidney disease. Moreover, preliminary results from clinical trials have suggested that these interventions are both safe and well-tolerated. This manuscript provides a brief overview of the potential renoprotective effects of stem cell-based treatments in acute as well as chronic renal dysfunction. Furthermore, the mechanisms that govern the process of kidney regeneration induced by stem cells are investigated. This article will examine the therapeutic approaches that make use of stem cells for the treatment of kidney disorders. The analysis will cover various cellular sources that have been utilised, potential mechanisms involved, and the outcomes that have been achieved so far.

5.
Can J Ophthalmol ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38369298

ABSTRACT

Retinoblastoma (RB) is a prevalent primitive intraocular malignancy in children, particularly in those younger than age 3 years. RB is caused by mutations in the RB1 gene. In developing countries, mortality rates for this type of cancer are still high, whereas industrialized countries have achieved a survival rate of >95%-98%. Untreated, the condition can be fatal, underscoring the importance of early diagnosis. The existing treatments primarily consist of surgery, radiotherapy, and chemotherapy. The detrimental effects of radiation and chemotherapeutic drugs have been documented as factors that contribute to increased mortality rates and negatively affect the quality of life for patients. MicroRNA (miRNA), a type of noncoding RNA, exerts a substantial influence on RB development and the emergence of treatment resistance by regulating diverse cellular processes. This review highlights recent developments in the involvement of miRNAs in RB. This encompasses the clinical significance of miRNAs in the diagnosis, prognosis, and treatment of RB. Additionally, this paper examines the regulatory mechanisms of miRNAs in RB and explores potential therapeutic interventions. This paper provides an overview of the current and emerging treatment options for RB, focusing on recent studies investigating the application of different types of nanoparticles for the diagnosis and treatment of this condition.

6.
Curr Drug Deliv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37815183

ABSTRACT

Ionic liquids (ILs) are poorly-coordinated ionic salts that can exist as a liquid at room temperatures (or <100 °C). ILs are also referred to as "designer solvents" because so many of them have been created to solve particular synthetic issues. ILs are regarded as "green solvents" because they have several distinctive qualities, including better ionic conduction, recyclability, improved solvation ability, low volatility, and thermal stability. These have been at the forefront of the most innovative fields of science and technology during the past few years. ILs may be employed in new drug formulation development and drug design in the field of pharmacy for various functions such as improvement of solubility, targeted drug delivery, stabilizer, permeability enhancer, or improvement of bioavailability in the development of pharmaceutical or vaccine dosage formulations. Ionic liquids have become a key component in various areas such as synthetic and catalytic chemistry, extraction, analytics, biotechnology, etc., due to their superior abilities along with highly modifiable potential. This study concentrates on the usage of ILs in various pharmaceutical applications enlisting their numerous purposes from the delivery of drugs to pharmaceutical synthesis. To better comprehend cuttingedge technologies in IL-based drug delivery systems, highly focused mechanistic studies regarding the synthesis/preparation of ILs and their biocompatibility along with the ecotoxicological and biological effects need to be studied. The use of IL techniques can address key issues regarding pharmaceutical preparations such as lower solubility and bioavailability which plays a key role in the lack of effectiveness of significant commercially available drugs.

7.
ACS Omega ; 8(41): 37731-37751, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37867639

ABSTRACT

The monoamine oxidase enzyme (MAO), which is bound on the membrane of mitochondria, catalyzes the oxidative deamination of endogenous and exogenous monoamines, including monoamine neurotransmitters such as serotonin, adrenaline, and dopamine. These enzymes have been proven to play a significant role in neurodegeneration; thus, they have recently been researched as prospective therapeutic targets for neurodegenerative illness treatment and management. MAO inhibitors have already been marketed as neurodegeneration illness treatments despite their substantial side effects. Hence, researchers are concentrating on developing novel molecules with selective and reversible inhibitory properties. Piperine, which is a phytochemical component present in black pepper, has been established as a potent MAO inhibitor. Piperine encompasses a piperidine nucleus with antibacterial, anti-inflammatory, antihypertensive, anticonvulsant, antimalarial, antiviral, and anticancer properties. The current Review focuses on the structural changes and structure-activity relationships of piperidine derivatives as MAO inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...