Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 199: 108159, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39029548

ABSTRACT

Gadopsis (Percichthyidae) is a freshwater genus distributed in south-eastern Australia, including Tasmania, and comprises two recognized species. Previous molecular phylogenetic investigations of the genus, mostly conducted in the pre-genomics era and reflecting a range of geographic and molecular sampling intensities, have supported the recognition of up to seven candidate species. Here we analyze a genome-wide SNP dataset that provides comprehensive geographic and genomic coverage of Gadopsis to produce a robust hypothesis of species boundaries and evolutionary relationships. We then leverage the SNP dataset to characterize relationships within candidate species that lack clear intraspecific phylogenetic relationships. We find further support for the seven previously identified candidate species of Gadopsis and evidence that the Bass Strait centered candidate species (SBA) originated from ancient hybridization. The SNP dataset permits a high degree of intraspecific resolution, providing improvements over previous studies, with numerous candidate species showing intraspecific divisions in phylogenetic analysis. Further population genetic analysis of the Murray-Darling candidate species (NMD) and SBA finds support for K = 6 and K = 7 genetic clusters, respectively. The SNP data generated for this study have diverse applications in natural resource management for these fishes of conservation concern.


Subject(s)
Conservation of Natural Resources , Fisheries , Perciformes , Phylogeny , Polymorphism, Single Nucleotide , Animals , Perciformes/genetics , Perciformes/classification , Genetics, Population , Australia
2.
Heredity (Edinb) ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918613

ABSTRACT

Anthropogenic climate change is forecast to drive regional climate disruption and instability across the globe. These impacts are likely to be exacerbated within biodiversity hotspots, both due to the greater potential for species loss but also to the possibility that endemic lineages might not have experienced significant climatic variation in the past, limiting their evolutionary potential to respond to rapid climate change. We assessed the role of climatic stability on the accumulation and persistence of lineages in an obligate freshwater fish group endemic to the southwest Western Australia (SWWA) biodiversity hotspot. Using 19,426 genomic (ddRAD-seq) markers and species distribution modelling, we explored the phylogeographic history of western (Nannoperca vittata) and little (Nannoperca pygmaea) pygmy perches, assessing population divergence and phylogenetic relationships, delimiting species and estimating changes in species distributions from the Pliocene to 2100. We identified two deep phylogroups comprising three divergent clusters, which showed no historical connectivity since the Pliocene. We conservatively suggest these represent three isolated species with additional intraspecific structure within one widespread species. All lineages showed long-term patterns of isolation and persistence owing to climatic stability but with significant range contractions likely under future climate change. Our results highlighted the role of climatic stability in allowing the persistence of isolated lineages in the SWWA. This biodiversity hotspot is under compounding threat from ongoing climate change and habitat modification, which may further threaten previously undetected cryptic diversity across the region.

3.
Syst Biol ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597146

ABSTRACT

Crater lake fishes are common evolutionary model systems, with recent studies suggesting a key role for gene flow in promoting rapid adaptation and speciation. However, the study of these young lakes can be complicated by human-mediated extinctions. Museum genomics approaches integrating genetic data from recently extinct species are therefore critical to understanding the complex evolutionary histories of these fragile systems. Here, we examine the evolutionary history of an extinct Southern Hemisphere crater lake endemic, the rainbowfish Melanotaenia eachamensis. We undertook comprehensive sampling of extant rainbowfish populations of the Atherton Tablelands of Australia alongside historical museum material to understand the evolutionary origins of the extinct crater lake population and the dynamics of gene flow across the ecoregion. The extinct crater lake species is genetically distinct from all other nearby populations due to historic introgression between two proximate riverine lineages, similar to other prominent crater lake speciation systems, but this historic gene flow has not been sufficient to induce a species flock. Our results suggest that museum genomics approaches can be successfully combined with extant sampling to unravel complex speciation dynamics involving recently extinct species.

SELECTION OF CITATIONS
SEARCH DETAIL