Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Noncoding RNA ; 8(2)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35314614

ABSTRACT

The aberrant expression of lncRNAs has been linked to the development and progression of different cancers. One such lncRNA is ABHD11 antisense RNA 1 (ABHD11-AS1), which has recently gained attention for its significant role in human malignancies. ABHD11-AS1 is highly expressed in gastric, lung, breast, colorectal, thyroid, pancreas, ovary, endometrium, cervix, and bladder cancers. Several reports highlighted the clinical significance of ABHD11-AS1 in prognosis, diagnosis, prediction of cancer progression stage, and treatment response. Significantly, the levels of ABHD11-AS1 in gastric juice had been exhibited as a clinical biomarker for the assessment of gastric cancer, while its serum levels have prognostic potential in thyroid cancers. The ABHD11-AS1 has been reported to exert oncogenic effects by sponging different microRNAs (miRNAs), altering signaling pathways such as PI3K/Akt, epigenetic mechanisms, and N6-methyladenosine (m6A) RNA modification. In contrast, the mouse homolog of AHD11-AS1 (Abhd11os) overexpression had exhibited neuroprotective effects against mutant huntingtin-induced toxicity. Considering the emerging research reports, the authors attempted in this first review on ABHD11-AS1 to summarize and highlight its oncogenic potential and clinical significance in different human cancers. Lastly, we underlined the necessity for future mechanistic studies to unravel the role of ABHD11-AS1 in tumor development, prognosis, progression, and targeted therapeutic approaches.

2.
Curr Drug Deliv ; 16(2): 111-122, 2019.
Article in English | MEDLINE | ID: mdl-30360740

ABSTRACT

BACKGROUND: Gemcitabine (GEM) is found effective in the treatment of many solid tumors. However, its use is restricted due to its small circulation half-life, fast metabolism and low capacity for selective tumor uptake. Folate receptors (FRs) have been recognized as cellular surface markers, which can be used for cancer targeting. PEGylated liposomes decorated with folic acid have been investigated for several anticancer agents not only to extend plasma half-life but also for tumor targeting via folic acid receptors which overexpressed on tumor cell surface. OBJECTIVE: Therefore, the objective of the present study was to prepare GEM-loaded folic acid tagged liposomes to improve the pharmacokinetics and tumor distribution of GEM. METHODS: The blank folate-targeted liposomes composed of HSPC/DSPE-mPEG2000/DSPE-mPEG-Folic acid were prepared first by thin film hydration technique. GEM was then loaded into liposomes by remote loading technique. The optimized liposomal formulations were evaluated in vitro for GEM release using dialysis technique, HeLa cell uptake using FACS technique, and cytotoxicity using MTT dye reduction assay. The comparative in vivo pharmacokinetic and biodistribution characteristics of radiolabeled (99mTc-labeled) plain GEM solution, and all liposomal formulations (conventional:CLs; stealth: SLs; folate targeted: FTLs) were evaluated in mice model. RESULTS: GEM-loaded FTLs showed sustained release profile, efficient uptake by HeLa cells and greater cytotoxicity. Further, FTLs displayed significantly improved pharmacokinetics, and biodistribution profile of loaded GEM. CONCLUSION: In conclusion, the developed GEM-loaded folic acid receptor-targeted liposomal formulation could be a promising and potential alternative formulation for further development.


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Deoxycytidine/analogs & derivatives , Folic Acid/administration & dosage , Phosphatidylethanolamines/administration & dosage , Polyethylene Glycols/administration & dosage , Animals , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/pharmacokinetics , Cell Survival/drug effects , Deoxycytidine/administration & dosage , Deoxycytidine/chemistry , Deoxycytidine/pharmacokinetics , Drug Liberation , Female , Folic Acid/chemistry , Folic Acid/pharmacokinetics , HeLa Cells , Humans , Liposomes , Mice , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/pharmacokinetics , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Tissue Distribution , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL