Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10879, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740840

ABSTRACT

The areal extent of seagrass meadows is in rapid global decline, yet they provide highly valuable societal benefits. However, their conservation is hindered by data gaps on current and historic spatial extents. Here, we outline an approach for national-scale seagrass mapping and monitoring using an open-source platform (Google Earth Engine) and freely available satellite data (Landsat, Sentinel-2) that can be readily applied in other countries globally. Specifically, we map contemporary (2021) and historical (2000-2021; n = 10 maps) shallow water seagrass extent across the Maldives. We found contemporary Maldivian seagrass extent was ~ 105 km2 (overall accuracy = 82.04%) and, notably, that seagrass area increased threefold between 2000 and 2021 (linear model, + 4.6 km2 year-1, r2 = 0.93, p < 0.001). There was a strongly significant association between seagrass and anthropogenic activity (p < 0.001) that we hypothesize to be driven by nutrient loading and/or altered sediment dynamics (from large scale land reclamation), which would represent a beneficial anthropogenic influence on Maldivian seagrass meadows. National-scale tropical seagrass expansion is unique against the backdrop of global seagrass decline and we therefore highlight the Maldives as a rare global seagrass 'bright spot' highly worthy of increased attention across scientific, commercial, and conservation policy contexts.


Subject(s)
Conservation of Natural Resources , Indian Ocean , Ecosystem , Environmental Monitoring/methods , Indian Ocean Islands
2.
Science ; 377(6606): 609-613, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35926055

ABSTRACT

Seagrasses are remarkable plants that have adapted to live in a marine environment. They form extensive meadows found globally that bioengineer their local environments and preserve the coastal seascape. With the increasing realization of the planetary emergency that we face, there is growing interest in using seagrasses as a nature-based solution for greenhouse gas mitigation. However, seagrass sensitivity to stressors is acute, and in many places, the risk of loss and degradation persists. If the ecological state of seagrasses remains compromised, then their ability to contribute to nature-based solutions for the climate emergency and biodiversity crisis remains in doubt. We examine the major ecological role that seagrasses play and how rethinking their conservation is critical to understanding their part in fighting our planetary emergency.


Subject(s)
Alismatales , Biodiversity , Conservation of Natural Resources , Adaptation, Physiological , Climate , Greenhouse Gases
3.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34725160

ABSTRACT

Seagrass meadows are threatened by multiple pressures, jeopardizing the many benefits they provide to humanity and biodiversity, including climate regulation and food provision through fisheries production. Conservation of seagrass requires identification of the main pressures contributing to loss and the regions most at risk of ongoing loss. Here, we model trajectories of seagrass change at the global scale and show they are related to multiple anthropogenic pressures but that trajectories vary widely with seagrass life-history strategies. Rapidly declining trajectories of seagrass meadow extent (>25% loss from 2000 to 2010) were most strongly associated with high pressures from destructive demersal fishing and poor water quality. Conversely, seagrass meadow extent was more likely to be increasing when these two pressures were low. Meadows dominated by seagrasses with persistent life-history strategies tended to have slowly changing or stable trajectories, while those with opportunistic species were more variable, with a higher probability of either rapidly declining or rapidly increasing. Global predictions of regions most at risk for decline show high-risk areas in Europe, North America, Japan, and southeast Asia, including places where comprehensive long-term monitoring data are lacking. Our results highlight where seagrass loss may be occurring unnoticed and where urgent conservation interventions are required to reverse loss and sustain their essential services.


Subject(s)
Anthropogenic Effects , Life History Traits , Models, Biological , Poaceae , Wetlands , Geography , Humans , Oceans and Seas
4.
Front Plant Sci ; 12: 664523, 2021.
Article in English | MEDLINE | ID: mdl-34093622

ABSTRACT

The phenotypic plasticity of seagrasses enables them to adapt to changes in environmental conditions and withstand or recover from disturbance. This plasticity was demonstrated in the large variation recorded throughout a suite of bioindicators measured within Zostera marina meadows around Wales and SW England, United Kingdom. Short-term spatial data were analysed alongside long-term monitoring data to determine which bioindicators best described the status of eelgrass meadows subjected to a range of environmental and anthropogenic drivers. Shoot density, leaf length, leaf nutrients (C:N ratio, %N, %P) including stable isotope of δ13C and δ15N provided insight into the longer-term status of the meadows studied and a good indication of the causes of long-term decline. Meadows ranged from those in the Isles of Scilly with little evidence of impact to those in Littlewick in Milford Haven, Wales that showed the highest levels of impacts of all sites. Bioindicators at Littlewick showed clear warning signs of nutrient loading reflected in the long-term decline in shoot density, and prevalence of wasting disease. This study highlights the need for continuous consistent monitoring and the benefits of using extra tools in the form of shoot nutrient analysis to determine causes of decline.

5.
Mar Pollut Bull ; 167: 112308, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33866203

ABSTRACT

Seagrass ecosystems exist throughout Pacific Island Countries and Territories (PICTs). Despite this area covering nearly 8% of the global ocean, information on seagrass distribution, biogeography, and status remains largely absent from the scientific literature. We confirm 16 seagrass species occur across 17 of the 22 PICTs with the highest number in Melanesia, followed by Micronesia and Polynesia respectively. The greatest diversity of seagrass occurs in Papua New Guinea (13 species), and attenuates eastward across the Pacific to two species in French Polynesia. We conservatively estimate seagrass extent to be 1446.2 km2, with the greatest extent (84%) in Melanesia. We find seagrass condition in 65% of PICTs increasing or displaying no discernible trend since records began. Marine conservation across the region overwhelmingly focuses on coral reefs, with seagrass ecosystems marginalised in conservation legislation and policy. Traditional knowledge is playing a greater role in managing local seagrass resources and these approaches are having greater success than contemporary conservation approaches. In a world where the future of seagrass ecosystems is looking progressively dire, the Pacific Islands appears as a global bright spot, where pressures remain relatively low and seagrass more resilient.


Subject(s)
Ecosystem , Melanesia , Micronesia , Pacific Islands , Papua New Guinea , Polynesia
6.
Mar Pollut Bull ; 167: 112307, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33862380

ABSTRACT

Seagrass ecosystems provide critical contributions (goods and perceived benefits or detriments) for the livelihoods and wellbeing of Pacific Islander peoples. Through in-depth examination of the contributions provided by seagrass ecosystems across the Pacific Island Countries and Territories (PICTs), we find a greater quantity in the Near Oceania (New Guinea, the Bismarck Archipelago and the Solomon Islands) and western Micronesian (Palau and Northern Marianas) regions; indicating a stronger coupling between human society and seagrass ecosystems. We also find many non-material contributions historically have been overlooked and under-appreciated by decision-makers. Closer cultural connections likely motivate guardianship of seagrass ecosystems by Pacific communities to mitigate local anthropogenic pressures. Regional comparisons also shed light on general and specific aspects of the importance of seagrass ecosystems to Pacific Islanders, which are critical for forming evidence-based policy and management to ensure the long-term resilience of seagrass ecosystems and the contributions they provide.


Subject(s)
Ecosystem , Hydrozoa , Animals , Humans , Melanesia , Pacific Islands , Quality of Life
7.
Front Plant Sci ; 12: 629962, 2021.
Article in English | MEDLINE | ID: mdl-33747011

ABSTRACT

The spatial extent of seagrass is poorly mapped, and knowledge of historical loss is limited. Here, we collated empirical and qualitative data using systematic review methods to provide unique analysis on seagrass occurrence and loss in the United Kingdom. We document 8,493 ha of recently mapped seagrass in the United Kingdom since 1998. This equates to an estimated 0.9 Mt of carbon, which, in the current carbon market represents about £22 million. Using simple models to estimate seagrass declines triangulated against habitat suitability models, we provide evidence of catastrophic seagrass loss; at least 44% of United Kingdom's seagrasses have been lost since 1936, 39% since the 1980's. However, losses over longer time spans may be as high as 92%. Based on these estimates, historical seagrass meadows could have stored 11.5 Mt of carbon and supported approximately 400 million fish. Our results demonstrate the vast scale of losses and highlight the opportunities to restore seagrass to support a range of ecosystems services.

8.
Patterns (N Y) ; 1(7): 100109, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33205139

ABSTRACT

The development and uptake of citizen science and artificial intelligence (AI) techniques for ecological monitoring is increasing rapidly. Citizen science and AI allow scientists to create and process larger volumes of data than possible with conventional methods. However, managers of large ecological monitoring projects have little guidance on whether citizen science, AI, or both, best suit their resource capacity and objectives. To highlight the benefits of integrating the two techniques and guide future implementation by managers, we explore the opportunities, challenges, and complementarities of using citizen science and AI for ecological monitoring. We identify project attributes to consider when implementing these techniques and suggest that financial resources, engagement, participant training, technical expertise, and subject charisma and identification are important project considerations. Ultimately, we highlight that integration can supercharge outcomes for ecological monitoring, enhancing cost-efficiency, accuracy, and multi-sector engagement.

9.
PeerJ ; 8: e9744, 2020.
Article in English | MEDLINE | ID: mdl-32923180

ABSTRACT

The use of baited remote underwater video (BRUV) for examining and monitoring marine biodiversity in temperate marine environments is rapidly growing, however many aspects of their effectiveness relies on assumptions based on studies from the Southern Hemisphere. The addition of bait to underwater camera systems acts as a stimulus for attracting individuals towards the camera field of view, however knowledge of the effectiveness of different bait types in northern temperate climbs is limited, particularly in dynamic coastal environments. Studies in the Southern Hemisphere indicate that oily baits are most effective whilst bait volume and weight do not impact BRUV effectiveness to any great degree. The present study assesses the influence of four bait types (mackerel, squid, crab and no bait (control)) on the relative abundance, taxonomic diversity and faunal assemblage composition at two independent locations within the North-Eastern Atlantic region; Swansea Bay, UK and Ria Formosa Lagoon, Portugal. Two different bait quantities (50 g and 350 g) were further trialled in Swansea Bay. Overall, patterns showed that baited deployments recorded statistically higher values of relative abundance and taxonomic diversity when compared to un-baited deployments in Swansea Bay but not in Ria Formosa Lagoon. No statistical evidence singled out one bait type as best performing for attracting higher abundances and taxonomic diversity in both locations. Faunal assemblage composition was however found to differ with bait type in Swansea Bay, with mackerel and squid attracting higher abundances of scavenging species compared to the crab and control treatments. With the exception of squid, bait quantity had minimal influence on bait attractiveness. It is recommended for consistency that a minimum of 50 g of cheap, oily fish such as mackerel is used as bait for BRUV deployments in shallow dynamic coastal environments in the North-Eastern Atlantic Region.

10.
Nat Commun ; 11(1): 3668, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699271

ABSTRACT

Restoration is becoming a vital tool to counteract coastal ecosystem degradation. Modifying transplant designs of habitat-forming organisms from dispersed to clumped can amplify coastal restoration yields as it generates self-facilitation from emergent traits, i.e. traits not expressed by individuals or small clones, but that emerge in clumped individuals or large clones. Here, we advance restoration science by mimicking key emergent traits that locally suppress physical stress using biodegradable establishment structures. Experiments across (sub)tropical and temperate seagrass and salt marsh systems demonstrate greatly enhanced yields when individuals are transplanted within structures mimicking emergent traits that suppress waves or sediment mobility. Specifically, belowground mimics of dense root mats most facilitate seagrasses via sediment stabilization, while mimics of aboveground plant structures most facilitate marsh grasses by reducing stem movement. Mimicking key emergent traits may allow upscaling of restoration in many ecosystems that depend on self-facilitation for persistence, by constraining biological material requirements and implementation costs.


Subject(s)
Adaptation, Physiological , Environmental Restoration and Remediation/methods , Hydrocharitaceae/physiology , Wetlands , Zosteraceae/physiology , Biodegradable Plastics , Biomimetics/methods , Ecology/methods , Environmental Restoration and Remediation/instrumentation , Florida , Netherlands , Seawater , Sweden , Tropical Climate , West Indies
11.
Ambio ; 49(7): 1257-1267, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31709492

ABSTRACT

Malaria is a serious global health issue, with around 200 million cases per year. As such, great effort has been put into the mass distribution of bed nets as a means of prophylaxis within Africa. Distributed mosquito nets are intended to be used for malaria protection, yet increasing evidence suggests that fishing is a primary use for these nets, providing fresh concerns for already stressed coastal ecosystems. While research documents the scale of mosquito net fisheries globally, no quantitative analysis of their landings exists. The effects of these fisheries on the wider ecosystem assemblages have not previously been examined. In this study, we present the first detailed analysis of the sustainability of these fisheries by examining the diversity, age class, trophic structure and magnitude of biomass removal. Dragnet landings, one of two gear types in which mosquito nets can be utilised, were recorded across ten sites in northern Mozambique where the use of Mosquito nets for fishing is common. Our results indicate a substantial removal of juveniles from coastal seagrass meadows, many of which are commercially important in the region or play important ecological roles. We conclude that the use of mosquito nets for fishing may contribute to food insecurity, greater poverty and the loss of ecosystem functioning.


Subject(s)
Malaria , Mosquito Nets , Adolescent , Africa, Eastern , Ecosystem , Fisheries , Humans , Mozambique
12.
Nat Commun ; 10(1): 2100, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31113956

ABSTRACT

Gear restrictions are an important management tool in small-scale tropical fisheries, improving sustainability and building resilience to climate change. Yet to identify the management challenges and complete footprint of individual gears, a broader systems approach is required that integrates ecological, economic and social sciences. Here we apply this approach to artisanal fish fences, intensively used across three oceans, to identify a previously underrecognized gear requiring urgent management attention. A longitudinal case study shows increased effort matched with large declines in catch success and corresponding reef fish abundance. We find fish fences to disrupt vital ecological connectivity, exploit > 500 species with high juvenile removal, and directly damage seagrass ecosystems with cascading impacts on connected coral reefs and mangroves. As semi-permanent structures in otherwise open-access fisheries, they create social conflict by assuming unofficial and unregulated property rights, while their unique high-investment-low-effort nature removes traditional economic and social barriers to overfishing.

13.
Ambio ; 48(8): 801-815, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30456457

ABSTRACT

Seagrasses, flowering marine plants that form underwater meadows, play a significant global role in supporting food security, mitigating climate change and supporting biodiversity. Although progress is being made to conserve seagrass meadows in select areas, most meadows remain under significant pressure resulting in a decline in meadow condition and loss of function. Effective management strategies need to be implemented to reverse seagrass loss and enhance their fundamental role in coastal ocean habitats. Here we propose that seagrass meadows globally face a series of significant common challenges that must be addressed from a multifaceted and interdisciplinary perspective in order to achieve global conservation of seagrass meadows. The six main global challenges to seagrass conservation are (1) a lack of awareness of what seagrasses are and a limited societal recognition of the importance of seagrasses in coastal systems; (2) the status of many seagrass meadows are unknown, and up-to-date information on status and condition is essential; (3) understanding threatening activities at local scales is required to target management actions accordingly; (4) expanding our understanding of interactions between the socio-economic and ecological elements of seagrass systems is essential to balance the needs of people and the planet; (5) seagrass research should be expanded to generate scientific inquiries that support conservation actions; (6) increased understanding of the linkages between seagrass and climate change is required to adapt conservation accordingly. We also explicitly outline a series of proposed policy actions that will enable the scientific and conservation community to rise to these challenges. We urge the seagrass conservation community to engage stakeholders from local resource users to international policy-makers to address the challenges outlined here, in order to secure the future of the world's seagrass ecosystems and maintain the vital services which they supply.


Subject(s)
Alismatales , Ecosystem , Biodiversity , Climate Change
14.
Curr Biol ; 28(21): R1229-R1232, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30399340

ABSTRACT

Tropical coral reefs are threatened and in decline, and their future is highly uncertain. With increasing rates of climate change and rising global temperatures, people looking to coral reefs for food and income may increasingly have to rely on resources from other habitats. Efforts to protect and conserve the coral reefs we have left are critical for a suite of economic, ecological, cultural and intrinsic reasons, but there is also an urgent need to take heed of the future scenarios from coral reefs and broaden the focus of tropical marine conservation. Seagrass meadows in particular are becoming ever more important for people and planet as coral reef health declines, but these systems are also globally under stronger anthropogenic threat. We need to increase and reprioritize our conservation efforts and use our limited conservation resources in a more targeted manner in order to attain sustainable systems. For seagrass, there are practicable conservation opportunities to develop sustainable ways to respond to increased resource use. Targeted action now could restore and protect seagrass meadows to maintain the many ecosystem services they provide.


Subject(s)
Alismatales , Climate Change , Conservation of Natural Resources , Ecosystem
15.
Sci Total Environ ; 634: 279-286, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29627551

ABSTRACT

Indonesia's marine ecosystems form a fundamental part of the world's natural heritage, representing a global maxima of marine biodiversity and supporting the world's second largest production of seafood. Seagrasses are a key part of that support. In the absence of empirical data we present evidence from expert opinions as to the state of Indonesia's seagrass ecosystems, their support for ecosystem services, with a focus on fisheries, and the damaging activities that threaten their existence. We further draw on expert opinion to elicit potential solutions to prevent further loss. Seagrasses and the ecosystem services they support across the Indonesian archipelago are in a critical state of decline. Declining seagrass health is the result of shifting environmental conditions due largely to coastal development, land reclamation, and deforestation, as well as seaweed farming, overfishing and garbage dumping. In particular, we also describe the declining state of the fisheries resources that seagrass meadows support. The perilous state of Indonesia's seagrasses will compromise their resilience to climate change and result in a loss of their high ecosystem service value. Community supported management initiatives provide one mechanism for seagrass protection. Exemplars highlight the need for increased local level autonomy for the management of marine resources, opening up opportunities for incentive type conservation schemes.


Subject(s)
Ecosystem , Environmental Monitoring , Biodiversity , Climate Change , Conservation of Natural Resources , Fisheries , Indonesia
16.
Front Plant Sci ; 9: 133, 2018.
Article in English | MEDLINE | ID: mdl-29467789

ABSTRACT

Excess nutrients shift the ecological balance of coastal ecosystems, and this eutrophication is an increasing problem across the globe. Nutrient levels may be routinely measured, but monitoring rarely attempts to determine the source of these nutrients, even though bio-indicators are available. Nitrogen stable isotope analysis in biota is one such bio-indicator, but across the British Isles, this is rarely used. In this study, we provide the first quantitative evidence of the anthropogenic drivers of reduced water quality surrounding seagrass meadows throughout the British Isles using the stable nitrogen isotope δ15N. The values of δ15N ranged from 3.15 to 20.16‰ (Mean ± SD = 8.69 ± 3.50‰), and were high within the Thames Basin suggesting a significant influx of urban sewage and livestock effluent into the system. Our study provides a rapid 'snapshot' indicating that many seagrass meadows in the British Isles are under anthropogenic stress given the widespread inefficiencies of current sewage treatment and farming practices. Ten of the 11 seagrass meadows sampled are within European marine protected sites. The 10 sites all contained seagrass contaminated by nutrients of a human and livestock waste origin leading us to question whether generic blanket protection is working for seagrasses in the United Kingdom. Infrastructure changes will be required if we are to develop strategic wastewater management plans that are effective in the long-term at protecting our designated Special Areas of Conservation. Currently, sewage pollution is a concealed issue; little information exists and is not readily accessible to members of the public.

17.
Mar Pollut Bull ; 134: 216-222, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28847630

ABSTRACT

There exists limited understanding of the long-term dynamics of the seagrass Zostera noltii and how this is influenced by anthropogenic pressures. Milford Haven is a heavily industrialised estuary and also one of the important sites for Zostera sp. in the UK. In this study we examine all available long-term spatial variability and abundance data of Zostera noltii within Milford Haven using historic datasets. Results show that Z. noltii in all sites have shown meadow expansion when compared to the first obtainable records. Little change in abundance over the past 10-15years for the two sites confirms certain seagrass populations to be robust and thriving. We hypothesise that these populations are showing a level of resilience to the high nutrient levels, disturbance and high turbidity present within the water column of the Haven.


Subject(s)
Zosteraceae/physiology , Environmental Monitoring , Estuaries , Wales
18.
Ecology ; 99(1): 29-35, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29083472

ABSTRACT

Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37° of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions.


Subject(s)
Predatory Behavior , Zosteraceae , Animals , Biodiversity , Ecosystem , Temperature
19.
Mar Pollut Bull ; 134: 210-215, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29137812

ABSTRACT

Seagrass meadows are complex social-ecological systems. Understanding seagrass meadows demands a fresh approach integrating "the human dimension". Citizen science is widely acknowledged for providing significant contributions to science, education, society and policy. Although the take up of citizen science in the marine environment has been slow, the need for such methods to fill vast information gaps is arguably great. Seagrass meadows are easy to access and provide an example of where citizen science is expanding. Technological developments have been pivotal to this, providing new opportunities for citizens to engage with seagrass. The increasing use of online tools has created opportunities to collect and submit as well as help process and analyse data. Citizen science has helped researchers integrate scientific and local knowledge and engage communities to implement conservation measures. Here we use a selection of examples to demonstrate how citizen science can secure a future for seagrass.


Subject(s)
Community Participation/methods , Conservation of Water Resources/economics , Crowdsourcing , Plants , Aquatic Organisms , Conservation of Water Resources/methods , Ecosystem , Environmental Monitoring/economics , Environmental Monitoring/methods , Environmental Policy , European Union , Humans , Knowledge
20.
Mar Pollut Bull ; 134: 118-122, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29137813

ABSTRACT

Dugongs (Dugong dugon) depend on seagrass meadows for food. As such seagrass and dugong conservation should go hand in hand. Assessing dugong populations is notoriously challenging. In the most resource dependent communities Local Ecological Knowledge (LEK) is generally high and can provide an alternative to the use of expensive ecological surveys to understand dugong populations and support associated resource management decisions. Residents of the Wakatobi National Park (WNP), SE Sulawesi, Indonesia are highly dependent on marine resources for livelihoods and correspondingly LEK is high. Here LEK documents the presence of D. dugon in the WNP and infers changes in population size. Interviews with local residents in 2012-2013 revealed 99 sightings of dugongs since 1942, 48 of which occurred between 2002 and 2012, with 79.82% of respondents having seen a dugong. Declines in the frequency of sightings within the lifetime of several respondents were reported, respondents speculating that populations are reduced. This information can guide further cooperative research and conservation efforts for the protection of a vulnerable species and the seagrass habitat on which it depends.


Subject(s)
Conservation of Water Resources/methods , Dugong , Animals , Ecosystem , Fisheries , Humans , Indonesia , Population Density , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...