Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(3): e0514922, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37067443

ABSTRACT

Due to rising antibiotic resistance, there is an urgent need for different treatment options for multidrug-resistant infections. One alternative under investigation is phage therapy, which uses phages to treat bacterial infections. Although phages are highly abundant in the environment, not all phages are suitable for phage therapy, and finding efficient phages that lack undesirable traits such as bacterial virulence factors is challenging. Here, we developed a targeted single-phage isolation method to detect and isolate phages of interest and to characterize their kinetics in a high-throughput manner. This assay has also revealed cell-to-cell variations at a single-cell level among cells infected with the same phage species, as well as among cells infected with different phage species. IMPORTANCE The spread of multidrug-resistant bacteria is a global human health threat, and without immediate action we are fast approaching a postantibiotic era. One possible alternative to antibiotics is the use of phages, that is, bacterial viruses. However, the isolation of phages that effectively kill their target bacteria has proven challenging. In addition, isolated phages must go through significant characterization before their efficacy is measured. The method developed in this work can isolate single phage particles on the basis of their similarity to previously characterized phages while excluding those with known undesirable traits, such as bacterial toxins, as well as characterizing their kinetics. Using this method, we revealed significant cell-to-cell variations in phage kinetics at a single-cell level among highly virulent phages. These results shed some light on unknown phage-bacterium interactions at the single-cell level.


Subject(s)
Bacterial Infections , Bacteriophages , Phage Therapy , Humans , Bacteriophages/genetics , Bacterial Infections/microbiology , Bacteria , Phage Therapy/methods , Drug Resistance, Multiple, Bacterial
2.
Curr Opin Virol ; 54: 101231, 2022 06.
Article in English | MEDLINE | ID: mdl-35643020

ABSTRACT

Despite the growing interest in the microbiome in recent years, the study of the virome, the major part of which is made up of bacteriophages, is relatively underdeveloped compared with their bacterial counterparts. This is due in part to the lack of a universally conserved marker such as the 16S rRNA gene. For this reason, the development of metagenomic approaches was a major milestone in the study of the viruses in the microbiome or virome. However, it has become increasingly clear that these wet-lab methods have not yet been able to detect the full range of viruses present, and our understanding of the composition of the virome remains incomplete. In recent years, a range of new technologies has been developed to further our understanding. Direct RNA-Seq technologies bypass the need for cDNA synthesis, thus avoiding biases subjected to this step, which further expands our understanding of RNA viruses. The new generation of amplification methods could solve the low biomass issue relevant to most virome samples while reducing the error rate and biases caused by whole genome amplification. The application of long-read sequencing to virome samples can resolve the shortcomings of short-read sequencing in generating complete viral genomes and avoid the biases introduced by the assembly. Novel experimental methods developed to measure viruses' host range can help overcome the challenges of assigning hosts to many phages, specifically unculturable ones.


Subject(s)
Bacteriophages , Viruses , Bacteriophages/genetics , Metagenome , Metagenomics/methods , RNA, Ribosomal, 16S/genetics , Virome , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...