Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 316, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700735

ABSTRACT

Nowadays, it is very important to produce new-generation drugs with antimicrobial properties that will target biofilm-induced infections. The first target for combating these microorganisms, which are the source itself. Antimicrobial peptides, which are more effective than antibiotics due to their ability to kill microorganisms and use a different metabolic pathway, are among the new options today. The aim of this study is to develop new-generation antibiotics that inhibit both biofilm-producing bacteria and the biofilm itself. For this purpose, we designed four different peptides by combining two amino acid forms (D- and L-) with the same sequence having alpha helix structures. It was found that the combined use of these two forms can increase antimicrobial efficacy more than 30-fold. These results are supported by molecular modeling and scanning electron microscopy (SEM), at the same time cytotoxicity (IC50) and hemotoxicity (HC50) values remained within the safe range. Furthermore, antibiofilm activities of these peptides were investigated. Since the existing biofilm inhibition methods in the literature do not technically simulate the exact situation, in this study, we have developed a real-time observable biofilm model and a new detection method based on it, which we call the CoMIC method. Findings have shown that the NET1 peptide with D-leucine amino acid in its structure and the NET3 peptide with D-arginine amino acid in its structure are effective in inhibiting biofilm. As a conclusion, our peptides can be considered as potential next-generation broad-spectrum antibiotic molecule/drug candidates that might be used in biofilm and clinical important bacteria. KEY POINTS: • Antimicrobial peptides were developed to inhibit both biofilms producing bacteria and the biofilm itself. • CoMIC will fill a very crucial gap in understanding biofilms and conducting the necessary quantitative studies. • Molecular modelling studies, NET1 peptide molecules tends to move towards and adhere to the membrane within nanoseconds.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Biofilms , Microbial Sensitivity Tests , Biofilms/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Models, Molecular , Microscopy, Electron, Scanning , Bacteria/drug effects
2.
Curr Microbiol ; 76(7): 791-798, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31073733

ABSTRACT

Several species of mycobacteria cause infections in humans. Species identification of clinical isolates of mycobacteria is very important for the decision of treatment and in choosing the appropriate treatment regimen. We have developed a multiplex PCR method that can identify practically all known species of mycobacteria, by determination of single-nucleotide differences at a total of 13 different polymorphic regions in the genes of rRNA and hsp65, in four PCR mixes. To achieve this goal, single-nucleotide differences in these polymorphic regions were used to divide mycobacterial species into two groups, than four, eight, etc., in an algorithmic manner. It was sufficient to reach single species level by evaluating 13 polymorphic regions. Evaluation of the multiplex PCR patterns by observable real-time electrophoresis (ORTE) simplified species identification. This new method may enable easy, rapid, and cost-effective identification of all species of mycobacteria.


Subject(s)
Multiplex Polymerase Chain Reaction , Mycobacterium Infections/microbiology , Mycobacterium/classification , Mycobacterium/genetics , Bacterial Proteins/genetics , Chaperonin 60/genetics , DNA, Bacterial/genetics , Genes, rRNA/genetics , Humans , Polymorphism, Single Nucleotide , Species Specificity
3.
Biol Pharm Bull ; 39(4): 502-15, 2016.
Article in English | MEDLINE | ID: mdl-27040623

ABSTRACT

In view of the emergence and frequency of multidrug-resistant and extensively drug-resistant tuberculosis and consequences of acquired resistance to clinically used drugs, we undertook the design and synthesis of novel prototypes that possess the advantage of the two pharmacophores of thiourea and 1,3,4-thiadiazole in a single molecular backbone. Three compounds from our series were distinguished from the others by their promising activity profiles against Mycobacterium tuberculosis strain H37Rv. Compounds 11 and 19 were the most active representatives with minimum inhibitory concentration (MIC) values of 10.96 and 11.48 µM, respectively. Compound 15 was shown to inhibit M. tuberculosis strain H37Rv with an MIC value of 17.81 µM. Cytotoxicity results in the Vero cell line showed that these three derivatives had selectivity indices between 1.8 and 8.7. In order to rationalize the biological results of our compounds, molecular docking studies with the enoyl acyl carrier protein reductase (InhA) of M. tuberculosis were performed and compounds 11, 15, and 19 were found to have good docking scores in the range of -7.12 to -7.83 kcal/mol.


Subject(s)
Anti-Infective Agents/chemistry , Thiadiazoles/chemistry , Thiourea/analogs & derivatives , Thiourea/chemistry , Animals , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Candida albicans/drug effects , Candida albicans/growth & development , Cell Line , Cell Survival/drug effects , Chlorocebus aethiops , Drug Design , HIV-1/drug effects , HIV-2/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Thiadiazoles/pharmacology , Thiourea/pharmacology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...