Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
3.
Conserv Lett ; 15(4): e12886, 2022.
Article in English | MEDLINE | ID: mdl-36248252

ABSTRACT

Human-wildlife cooperation occurs when humans and free-living wild animals actively coordinate their behavior to achieve a mutually beneficial outcome. These interactions provide important benefits to both the human and wildlife communities involved, have wider impacts on the local ecosystem, and represent a unique intersection of human and animal cultures. The remaining active forms are human-honeyguide and human-dolphin cooperation, but these are at risk of joining several inactive forms (including human-wolf and human-orca cooperation). Human-wildlife cooperation faces a unique set of conservation challenges, as it requires multiple components-a motivated human and wildlife partner, a suitable environment, and compatible interspecies knowledge-which face threats from ecological and cultural changes. To safeguard human-wildlife cooperation, we recommend: (i) establishing ethically sound conservation strategies together with the participating human communities; (ii) conserving opportunities for human and wildlife participation; (iii) protecting suitable environments; (iv) facilitating cultural transmission of traditional knowledge; (v) accessibly archiving Indigenous and scientific knowledge; and (vi) conducting long-term empirical studies to better understand these interactions and identify threats. Tailored safeguarding plans are therefore necessary to protect these diverse and irreplaceable interactions. Broadly, our review highlights that efforts to conserve biological and cultural diversity should carefully consider interactions between human and animal cultures. Please see AfricanHoneyguides.com/abstract-translations for Kiswahili and Portuguese translations of the abstract.

4.
Laterality ; 27(4): 379-405, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35833319

ABSTRACT

The New Caledonian crow (Corvus moneduloides) is known for displaying a unique set of tool-related behaviours, with the bird's bill acting as an individually consistently lateralized effector. However, we still fail to understand how such laterality develops, is modulated or even if its expression is consistent across other behavioural categories. Creating the first ethogram for this species allowed us to examine laterality and vocalisations in a population of wild, free-flying New Caledonian crows using detailed analyses of close-up video footage. We revealed the existence of an overall strong left-sided bias during object manipulation only and which was driven by the adult crows of our focal population, the stabilization of individual preferences occurring during the birds' juvenile years. Individually, at least one crow showed consistent side biases to the right and left within different behavioural categories. Our findings highlight previously unknown variability in behavioural laterality in this species, thus advocating for further investigation. Specifically, we argue that a better understanding of the New Caledonian crow's biology and ecology is required if one wishes to pursue the promising comparative road that laterality could be connected to the evolution of tool-making.


Subject(s)
Crows , Tool Use Behavior , Animals , Functional Laterality
5.
Sci Adv ; 8(9): eabl7446, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35235360

ABSTRACT

Understanding the evolution of human technology is key to solving the mystery of our origins. Current theories propose that technology evolved through the accumulation of modifications that were mostly transmitted between individuals by blind copying and the selective retention of advantageous variations. An alternative account is that high-fidelity transmission in the context of cumulative technological culture is supported by technical reasoning, which is a reconstruction mechanism that allows individuals to converge to optimal solutions. We tested these two competing hypotheses with a microsociety experiment, in which participants had to optimize a physical system in partial- and degraded-information transmission conditions. Our results indicated an improvement of the system over generations, which was accompanied by an increased understanding of it. The solutions produced tended to progressively converge over generations. These findings show that technical reasoning can bolster high-fidelity transmission through convergent transformations, which highlights its role in the cultural evolution of technology.

6.
Philos Trans R Soc Lond B Biol Sci ; 377(1841): 20200455, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34775819

ABSTRACT

The origins of human speech are obscure; it is still unclear what aspects are unique to our species or shared with our evolutionary cousins, in part due to a lack of a common framework for comparison. We asked what chimpanzee and human vocal production acoustics have in common. We examined visible supra-laryngeal articulators of four major chimpanzee vocalizations (hoos, grunts, barks, screams) and their associated acoustic structures, using techniques from human phonetic and animal communication analysis. Data were collected from wild adult chimpanzees, Taï National Park, Ivory Coast. Both discriminant and principal component classification procedures revealed classification of call types. Discriminating acoustic features include voice quality and formant structure, mirroring phonetic features in human speech. Chimpanzee lip and jaw articulation variables also offered similar discrimination of call types. Formant maps distinguished call types with different vowel-like sounds. Comparing our results with published primate data, humans show less F1-F2 correlation and further expansion of the vowel space, particularly for [i] sounds. Unlike recent studies suggesting monkeys achieve human vowel space, we conclude from our results that supra-laryngeal articulatory capacities show moderate evolutionary change, with vowel space expansion continuing through hominoid evolution. Studies on more primate species will be required to substantiate this. This article is part of the theme issue 'Voice modulation: from origin and mechanism to social impact (Part II)'.


Subject(s)
Pan troglodytes , Voice Quality , Acoustics , Animals , Pan troglodytes/physiology , Phonetics , Speech Acoustics
7.
Sci Rep ; 11(1): 23679, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880303

ABSTRACT

Immature orangutans acquire their feeding skills over several years, via social and independent learning. So far, it has remained uninvestigated to what extent orangutan mothers are actively involved in this learning process. From a fitness point of view, it may be adaptive for mothers to facilitate their offspring's skill acquisition to make them reach nutritional independence faster. Food solicitations are potential means to social learning which, because of their interactive nature, allow to investigate the degree of active involvement of the mother. To investigate the role of food solicitation and the role of the mother in immatures' foraging skill acquisition, we analysed 1390 food solicitation events between 21 immature Sumatran orangutans (Pongo abelii) and their mothers, collected over 13 years at the Suaq Balimbing orangutan population. We found that solicitation rates decreased with increasing age of the immatures and increased with increasing processing complexity of the food item. Mothers were more likely to share complex items and showed the highest likelihoods of sharing around the age at which immatures are learning most of their feeding skills. Our results indicate that immature Sumatran orangutans use food solicitation to acquire feeding skills. Furthermore, mothers flexibly adjust their behaviour in a way that likely facilitates their offspring's skill acquisition. We conclude that orangutan mothers have a more active role in the skill acquisition of their offspring than previously thought.


Subject(s)
Behavior, Animal , Feeding Behavior , Mothers , Pongo pygmaeus , Age Factors , Animals , Female , Indonesia , Male , Social Behavior , Social Learning
8.
Top Cogn Sci ; 13(4): 684-707, 2021 10.
Article in English | MEDLINE | ID: mdl-34612604

ABSTRACT

Understanding the link between brain evolution and the evolution of distinctive features of modern human cognition is a fundamental challenge. A still unresolved question concerns the co-evolution of tool behavior (i.e., tool use or tool making) and language. The shared neurocognitive processes hypothesis suggests that the emergence of the combinatorial component of language skills within the frontal lobe/Broca's area made possible the complexification of tool-making skills. The importance of the frontal lobe/Broca's area in tool behavior is somewhat surprising with regard to the literature on neuropsychology and cognitive neuroscience, which has instead stressed the critical role of the left inferior parietal lobe. Therefore, to be complete, any version of the shared neurocognitive processes hypothesis needs to integrate the potential interactions between the frontal lobe/Broca's area and the left inferior parietal lobe as well as their co-evolution at a phylogenetic level. Here, we sought to provide the first elements of answer through the use of the massive deployment framework, which posits that evolutionarily older brain areas are deployed in more cognitive functions (i.e., they are less specific). We focused on the left parietal cortex, and particularly the left areas PF, PGI, and anterior intraparietal (AIP), which are known to be involved in tool use, language, and motor control, respectively. The deployment of each brain area in different cognitive functions was measured by conducting a meta-analysis of neuroimaging studies. Our results confirmed the pattern of specificity for each brain area and also showed that the left area PGI was far less specific than the left areas PF and AIP. From these findings, we discuss the different evolutionary scenarios depicting the potential co-evolution of the combinatorial and generative components of language and tool behavior in our lineage.


Subject(s)
Frontal Lobe , Language , Brain/diagnostic imaging , Brain Mapping , Humans , Magnetic Resonance Imaging , Parietal Lobe , Phylogeny
9.
J Intell ; 8(3)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630788

ABSTRACT

Using the comparative approach, researchers draw inferences about the evolution of cognition. Psychologists have postulated several hypotheses to explain why certain species are cognitively more flexible than others, and these hypotheses assume that certain cognitive skills are linked together to create a generally "smart" species. However, empirical findings suggest that several animal species are highly specialized, showing exceptional skills in single cognitive domains while performing poorly in others. Although some cognitive skills may indeed overlap, we cannot a priori assume that they do across species. We argue that the term "cognition" has often been used by applying an anthropocentric viewpoint rather than a biocentric one. As a result, researchers tend to overrate cognitive skills that are human-like and assume that certain skills cluster together in other animals as they do in our own species. In this paper, we emphasize that specific physical and social environments create selection pressures that lead to the evolution of certain cognitive adaptations. Skills such as following the pointing gesture, tool-use, perspective-taking, or the ability to cooperate evolve independently from each other as a concrete result of specific selection pressures, and thus have appeared in distantly related species. Thus, there is not "one cognition". Our argument is founded upon traditional Darwinian thinking, which-although always at the forefront of biology-has sometimes been neglected in animal cognition research. In accordance with the biocentric approach, we advocate a broader empirical perspective as we are convinced that to better understand animal minds, comparative researchers should focus much more on questions and experiments that are ecologically valid. We should investigate nonhuman cognition for its own sake, not only in comparison to the human model.

10.
Philos Trans R Soc Lond B Biol Sci ; 375(1803): 20190495, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32475334

ABSTRACT

Traditional attempts to understand the evolution of human cognition compare humans with other primates. This research showed that relative brain size covaries with cognitive skills, while adaptations that buffer the developmental and energetic costs of large brains (e.g. allomaternal care), and ecological or social benefits of cognitive abilities, are critical for their evolution. To understand the drivers of cognitive adaptations, it is profitable to consider distant lineages with convergently evolved cognitions. Here, we examine the facilitators of cognitive evolution in corvid birds, where some species display cultural learning, with an emphasis on family life. We propose that extended parenting (protracted parent-offspring association) is pivotal in the evolution of cognition: it combines critical life-history, social and ecological conditions allowing for the development and maintenance of cognitive skillsets that confer fitness benefits to individuals. This novel hypothesis complements the extended childhood idea by considering the parents' role in juvenile development. Using phylogenetic comparative analyses, we show that corvids have larger body sizes, longer development times, extended parenting and larger relative brain sizes than other passerines. Case studies from two corvid species with different ecologies and social systems highlight the critical role of life-history features on juveniles' cognitive development: extended parenting provides a safe haven, access to tolerant role models, reliable learning opportunities and food, resulting in higher survival. The benefits of extended juvenile learning periods, over evolutionary time, lead to selection for expanded cognitive skillsets. Similarly, in our ancestors, cooperative breeding and increased group sizes facilitated learning and teaching. Our analyses highlight the critical role of life-history, ecological and social factors that underlie both extended parenting and expanded cognitive skillsets. This article is part of the theme issue 'Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals'.


Subject(s)
Biological Evolution , Cognition , Crows , Maternal Behavior , Paternal Behavior , Animals , Crows/growth & development , Life History Traits , Phylogeny , Songbirds/growth & development
11.
Sci Rep ; 9(1): 4417, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872658

ABSTRACT

Wild sea otters (Enhydra lutris) are the only marine mammals that habitually use stones while foraging, using them to break open hard-shelled foods like marine snails and bivalves. However, the physical effects of this behavior on local environments are unknown. We show that sea otters pounding mussels on tidally emergent rocks leave distinct material traces, which can be recognized using methods from archaeology. We observed sea otters pounding mussels at the Bennett Slough Culverts site, California, USA, over a l0-year period. Sea otters repeatedly used the same rocks as anvils, which resulted in distinctive wear patterns on the rocks and accumulations of broken mussel shells, all fractured in a characteristic way, below them. Our results raise the potential for discovery of similar sea otter pounding sites in areas that no longer have resident sea otter populations.


Subject(s)
Animal Shells/physiology , Archaeology , Bivalvia/physiology , Geologic Sediments/analysis , Otters/physiology , Animals , California , Plant Leaves
12.
Prog Brain Res ; 238: 295-323, 2018.
Article in English | MEDLINE | ID: mdl-30097196

ABSTRACT

To understand the evolution of lateralized motor biases and cognitive functions, we rely on archeological methods to give us a window onto the past. Currently, the overwhelming majority of prehistoric data on asymmetry and laterality concern only the hominin lineage, spanning the time period from the presumed evolutionary split with the other great apes around 6-8 million years ago until the present day. We present an overview of these data from paleontology and archeology. Lateralized motor biases and anatomical asymmetries are evident throughout prehistory, showing increases in the predominance of right-handedness over time. Laterality was a key feature of the motor-cognitive development of extinct human ancestors. However, further research in living humans is needed to resolve the extent of colateralization of functions in the human brain, so we urge caution when inferring functional cognitive laterality from behavioral markers of handedness.


Subject(s)
Archaeology , Biological Evolution , Cognition/physiology , Functional Laterality/physiology , Paleontology , Animals , Hominidae , Humans
13.
Learn Behav ; 45(3): 205-206, 2017 09.
Article in English | MEDLINE | ID: mdl-28364366

ABSTRACT

The Hawaiian crow has been revealed as a skilled tool user, confirmed by testing the last members of this endangered species that survive in captivity. The finding suggests its behavior is tantalizingly similar to that of the famous tool-using New Caledonian crow and has implications for the evolution of tool use and intelligence in birds.


Subject(s)
Crows , Tool Use Behavior , Animals , Cognition
14.
Front Psychol ; 5: 552, 2014.
Article in English | MEDLINE | ID: mdl-24982641

ABSTRACT

Current neuroimaging techniques with high spatial resolution constrain participant motion so that many natural tasks cannot be carried out. The aim of this paper is to show how a time-locked correlation-analysis of cerebral blood flow velocity (CBFV) lateralization data, obtained with functional TransCranial Doppler (fTCD) ultrasound, can be used to infer cerebral activation patterns across tasks. In a first experiment we demonstrate that the proposed analysis method results in data that are comparable with the standard Lateralization Index (LI) for within-task comparisons of CBFV patterns, recorded during cued word generation (CWG) at two difficulty levels. In the main experiment we demonstrate that the proposed analysis method shows correlated blood-flow patterns for two different cognitive tasks that are known to draw on common brain areas, CWG, and Music Synthesis. We show that CBFV patterns for Music and CWG are correlated only for participants with prior musical training. CBFV patterns for tasks that draw on distinct brain areas, the Tower of London and CWG, are not correlated. The proposed methodology extends conventional fTCD analysis by including temporal information in the analysis of cerebral blood-flow patterns to provide a robust, non-invasive method to infer whether common brain areas are used in different cognitive tasks. It complements conventional high resolution imaging techniques.

15.
PLoS One ; 8(8): e72693, 2013.
Article in English | MEDLINE | ID: mdl-24023634

ABSTRACT

BACKGROUND: The popular theory that complex tool-making and language co-evolved in the human lineage rests on the hypothesis that both skills share underlying brain processes and systems. However, language and stone tool-making have so far only been studied separately using a range of neuroimaging techniques and diverse paradigms. METHODOLOGY/PRINCIPAL FINDINGS: We present the first-ever study of brain activation that directly compares active Acheulean tool-making and language. Using functional transcranial Doppler ultrasonography (fTCD), we measured brain blood flow lateralization patterns (hemodynamics) in subjects who performed two tasks designed to isolate the planning component of Acheulean stone tool-making and cued word generation as a language task. We show highly correlated hemodynamics in the initial 10 seconds of task execution. CONCLUSIONS/SIGNIFICANCE: Stone tool-making and cued word generation cause common cerebral blood flow lateralization signatures in our participants. This is consistent with a shared neural substrate for prehistoric stone tool-making and language, and is compatible with language evolution theories that posit a co-evolution of language and manual praxis. In turn, our results support the hypothesis that aspects of language might have emerged as early as 1.75 million years ago, with the start of Acheulean technology.


Subject(s)
Brain/physiology , Echoencephalography , Functional Laterality/physiology , Language , Tool Use Behavior/physiology , Ultrasonography, Doppler, Transcranial/methods , Adult , Aged , Blood Volume/physiology , Brain/blood supply , Brain Mapping , Cerebrovascular Circulation/physiology , Cues , Female , Humans , Male , Middle Aged , Regional Blood Flow/physiology , Speech/physiology , Task Performance and Analysis , Time Factors , Young Adult
16.
J Hum Evol ; 57(4): 411-9, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19758680

ABSTRACT

Homo sapiens sapiens displays a species wide lateralised hand preference, with 85% of individuals in all populations being right-handed for most manual actions. In contrast, no other great ape species shows such strong and consistent population level biases, indicating that extremes of both direction and strength of manual laterality (i.e., species-wide right-handedness) may have emerged after divergence from the last common ancestor. To reconstruct the hand use patterns of early hominins, laterality is assessed in prehistoric artefacts. Group right side biases are well established from the Neanderthals onward, while patchy evidence from older fossils and artefacts indicates a preponderance of right-handed individuals. Individual hand preferences and group level biases can occur in chimpanzees and other apes for skilled tool use and food processing. Comparing these findings with human ethological data on spontaneous hand use reveals that the great ape clade (including humans) probably has a common effect at the individual level, such that a person can vary from ambidextrous to completely lateralised depending on the action. However, there is currently no theoretical model to explain this result. The degree of task complexity and bimanual complementarity have been proposed as factors affecting lateralisation strength. When primatology meets palaeoanthropology, the evidence suggests species-level right-handedness may have emerged through the social transmission of increasingly complex, bimanually differentiated, tool using activities.


Subject(s)
Archaeology , Functional Laterality , Animals , Archaeology/history , Archaeology/methods , Ethology/history , Functional Laterality/physiology , History, Ancient , Hominidae/anatomy & histology , Hominidae/classification , Hominidae/physiology , Humans
17.
J Anthropol Sci ; 86: 7-35, 2008.
Article in English | MEDLINE | ID: mdl-19934467

ABSTRACT

Population-level right-handedness is a defining characteristic of humans. Despite extensive research, we still do not know the conditions or timing of its emergence in human evolution. We present a review of research into the origins of handedness, based on fossil and archaeological data for hand preference and great ape hand-use. The data show that skeletal asymmetries in arm and hand bones supporting a rightsided dominance were present at least in the genus Homo, although data are more robust for Neanderthals. The evidence from tool-use, production, and cave art confirms that right-hand preference was established in Neanderthals and was maintained until the present. The great apes can provide real-life models for testing the conditions that facilitate or enhance hand preference at both the individual and group levels. The database on great ape hand-use indicates that they do exhibit hand preferences, especially in complex tasks. However, their preferences vary between tasks, and while group-level biases have occasionally been reported, no human-like handedness bias has been found. We discuss the methodological problems encountered in these approaches. Shared problems include a lack of agreed terminology both within and between disciplines, small sample sizes, interpretation biases and a failure to replicate experiments. In general, there is a paucity of fossil material, with poor preservation hampering traditional metric methods. The archaeological data are often founded on unreliable methods. The primate database is plagued by the use of measures that could be inappropriate for revealing hand preference, and by methodological inconsistencies between studies. We emphasise the need to standardise the methods to allow between studies and species comparisons. We propose that when referring to "handedness" it is more appropriate to use the terms "hand preference" and "hand use", to avoid confusion with each discipline's own definition of handedness.

SELECTION OF CITATIONS
SEARCH DETAIL
...