Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0297749, 2024.
Article in English | MEDLINE | ID: mdl-38687749

ABSTRACT

Therapeutic options for managing Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest types of aggressive malignancies, are limited and disappointing. Therefore, despite suboptimal clinical effects, gemcitabine (GEM) remains the first-line chemotherapeutic drug in the clinic for PDAC treatment. The therapeutic limitations of GEM are primarily due to poor bioavailability and the development of chemoresistance resulting from the addiction of mutant-K-RAS/AKT/ERK signaling-mediated desmoplastic barriers with a hypoxic microenvironment. Several new therapeutic approaches, including nanoparticle-assisted drug delivery, are being investigated by us and others. This study used pH-responsive nanoparticles encapsulated ERK inhibitor (SCH772984) and surface functionalized with tumor-penetrating peptide, iRGD, to target PDAC tumors. We used a small molecule, SCH772984, to target ERK1 and ERK2 in PDAC and other cancer cells. This nanocarrier efficiently released ERKi in hypoxic and low-pH environments. We also found that the free-GEM, which is functionally weak when combined with nanoencapsulated ERKi, led to significant synergistic treatment outcomes in vitro and in vivo. In particular, the combination approaches significantly enhanced the GEM effect in PDAC growth inhibition and prolonged survival of the animals in a genetically engineered KPC (LSL-KrasG12D/+/LSL-Trp53R172H/+/Pdx-1-Cre) pancreatic cancer mouse model, which is not observed in a single therapy. Mechanistically, we anticipate that the GEM efficacy was increased as ERKi blocks desmoplasia by impairing the production of desmoplastic regulatory factors in PDAC cells and KPC mouse tumors. Therefore, 2nd generation ERKi (SCH 772984)-iRGD-pHNPs are vital for the cellular response to GEM and denote a promising therapeutic target in PDAC with mutant K-RAS.


Subject(s)
Deoxycytidine , Gemcitabine , Nanoparticles , Pancreatic Neoplasms , Animals , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/administration & dosage , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Mice , Humans , Cell Line, Tumor , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Disease Models, Animal , Tumor Microenvironment/drug effects
2.
Cells ; 13(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38474359

ABSTRACT

The aberrant glycosylation is a hallmark of cancer progression and chemoresistance. It is also an immune therapeutic target for various cancers. Tunicamycin (TM) is one of the potent nucleoside antibiotics and an inhibitor of aberrant glycosylation in various cancer cells, including breast cancer, gastric cancer, and pancreatic cancer, parallel with the inhibition of cancer cell growth and progression of tumors. Like chemotherapies such as doxorubicin (DOX), 5'fluorouracil, etoposide, and cisplatin, TM induces the unfolded protein response (UPR) by blocking aberrant glycosylation. Consequently, stress is induced in the endoplasmic reticulum (ER) that promotes apoptosis. TM can thus be considered a potent antitumor drug in various cancers and may promote chemosensitivity. However, its lack of cell-type-specific cytotoxicity impedes its anticancer efficacy. In this review, we focus on recent advances in our understanding of the benefits and pitfalls of TM therapies in various cancers, including breast, colon, and pancreatic cancers, and discuss the mechanisms identified by which TM functions. Finally, we discuss the potential use of nano-based drug delivery systems to overcome non-specific toxicity and enhance the therapeutic efficacy of TM as a targeted therapy.


Subject(s)
Breast Neoplasms , Endoplasmic Reticulum Stress , Humans , Female , Tunicamycin/pharmacology , Cell Line, Tumor , Glycosylation , Breast Neoplasms/pathology
3.
Article in English | MEDLINE | ID: mdl-37033416

ABSTRACT

Overactivated NLRP3 inflammasome has been shown to associate with an increasing number of disease conditions. Activation of the NLRP3 inflammasome results in caspase-1-catalyzed formation of active pro-inflammatory cytokines (IL-1ß and IL-18) resulting in pyroptosis. The multi-protein composition of the NLRP3 inflammasome and its sensitivity to several damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) make this extensively studied inflammasome an attractive target to treat chronic conditions. However, none of the known NLRP3 inhibitors has been approved for clinical use. Sulfonylurea and covalent inhibitors with electrophilic warhead (Michael acceptor) are among the prominent classes of compounds explored for their NLRP3 inhibitory effects. Chalcone, a small molecule with α, ß unsaturated carbonyl group (Michael acceptor), has also been studied as a promising scaffold for the development of NLRP3 inhibitors. Low molecular weight, easy to manipulate lipophilicity and cost-effectiveness have attracted many to use chalcone scaffold for drug development. In this review, we highlight chalcone derivatives with NLRP3 inflammasome inhibitory activities. Recent developments and potential new directions summarized here will, hopefully, serve as valuable perspectives for investigators including medicinal chemists and drug discovery researchers to utilize chalcone as a scaffold for developing novel NLRP3 inflammasome inhibitors.

4.
J Mol Struct ; 12472022 Jan 05.
Article in English | MEDLINE | ID: mdl-34776532

ABSTRACT

Donepezil (DNPZ) is one of the few FDA-approved widely used medication in the clinical care of Alzheimer's disease (AD) patients. To investigate the effect of geometry and to find the significance of an enol form if any in DNPZ on acetylcholinesterase (AChE) inhibition, we changed the tetrahedral geometry of DNPZ to planar trigonal pyramidal geometry by replacing the α-carbon atom next to ketone functionality with a nitrogen atom. To mimic 1-indanone in DNPZ, we selected 1-isoindolinone framework to synthesize 25 new DNPZ derivatives and characterized using 1H NMR, 13C NMR and ESI-MS spectroscopy methods. Drug likeliness profile for each compound was predicted using Molinspiration online software following Lipinski's rule. Commercially available assay kits were used to measure AChE and butyrylcholinesterase (BuChE) inhibitory effects. NIH/3T3 mouse embryonic fibroblast cell line was used to measure cytotoxic and proliferation effects using LDH and MTT assay, respectively. Compound #20 was selected for comparative computational docking, modelling and physicochemical studies. Our results show that DNPZ with tetrahedral geometry has 3-fold higher AChE inhibition as compared to compound #20 with planar trigonal pyramidal geometry. Our approach may be useful as a novel indirect method to study the significance of the enol form in DNPZ (or similar compounds), since constant interconversion between the keto and enol forms does not permit a direct determination of the effect of the enol form of DNPZ in vivo. Overall, we conclude that the tetrahedral is a better fit and any change in geometry significantly drives down the cholinesterase inhibitory effect of DNPZ.

5.
Bioorg Chem ; 108: 104681, 2021 03.
Article in English | MEDLINE | ID: mdl-33571811

ABSTRACT

Chalcone [(E)-1,3-diphenyl-2-propene-1-one], a small molecule with α, ß unsaturated carbonyl group is a precursor or component of many natural flavonoids and isoflavonoids. It is one of the privileged structures in medicinal chemistry. It possesses a wide range of biological activities encouraging many medicinal chemists to study this scaffold for its usefulness to oncology, infectious diseases, virology and neurodegenerative diseases including Alzheimer's disease (AD). Small molecular size, convenient and cost-effective synthesis, and flexibility for modifications to modulate lipophilicity suitable for blood brain barrier (BBB) permeability make chalcones a preferred candidate for their therapeutic and diagnostic potential in AD. This review summarizes and highlights the importance of chalcone and its analogs as single target small therapeutic agents, multi-target directed ligands (MTDLs) as well as molecular imaging agents for AD. The information summarized here will guide many medicinal chemist and researchers involved in drug discovery to consider chalcone as a potential scaffold for the development of anti-AD agents including theranostics.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Chalcone/chemistry , Chalcone/therapeutic use , Alzheimer Disease/metabolism , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Chalcone/analogs & derivatives , Humans , Molecular Structure
6.
Fitoterapia ; 146: 104722, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32920034

ABSTRACT

Isoindolin-1-one or 1-isoindolinone framework is referred to phthalimidines or benzo fused γ-lactams of the corresponding γ-amino carboxylic acids and has been of prime interest for scientists for last several decades. 1-Isoindolinone framework is found in a wide range of naturally occurring compounds with diverse biological activities and therapeutic potential for various chronic diseases. Recent developments in synthetic methods for their procurement have opened a new era of 1-isoindolinone chemistry. This review aims to provide an alphabetical quick reference guide to only 1-isoindolinone based natural products and its variable fused, oxidized and reduced state skeleton with information for advanced chemotaxonomic analyses, cellular targets/pathways and diverse biological activities and future use for medicinal chemistry.


Subject(s)
Biological Products/chemistry , Phthalimides/chemistry , Biological Products/pharmacology , Molecular Structure , Phthalimides/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plants, Medicinal/chemistry
7.
ACS Sens ; 2(7): 903-908, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-28750532

ABSTRACT

Direct tracking of lithium ions with time and spatial resolution can provide an important diagnostic tool for understanding mechanisms in lithium ion batteries. A fluorescent indicator of lithium ions, 2-(2-hydroxyphenyl)naphthoxazole, was synthesized and used for real-time tracking of lithium ions via widefield fluorescence microscopy. The fluorophore can be excited with visible light and was shown to enable quantitative determination of the lithium ion diffusion constant in a microfluidic model system for a plasticized polymer electrolyte lithium battery. The use of widefield fluorescence microscopy for in situ tracking of lithium ions in batteries is discussed.

8.
J Am Chem Soc ; 138(11): 3876-83, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-26944030

ABSTRACT

The action of molecular catalysts comprises multiple microscopic kinetic steps whose nature is of central importance in determining catalyst activity and selectivity. Single-molecule microscopy enables the direct examination of these steps, including elucidation of molecule-to-molecule variability. Such molecular diversity is particularly important for the behavior of molecular catalysts supported at surfaces. We present the first combined investigation of the initiation dynamics of an operational palladium cross-coupling catalyst at the bulk and single-molecule levels, including under turnover conditions. Base-initiated kinetics reveal highly heterogeneous behavior indicative of diverse catalyst population. Unexpectedly, this distribution becomes more heterogeneous at increasing base concentration. We model this behavior with a two-step saturation mechanism and identify specific microscopic steps where chemical variability must exist in order to yield observed behavior. Critically, we reveal how structural diversity at a surface translates into heterogeneity in catalyst behavior, while demonstrating how single-molecule experiments can contribute to understanding of molecular catalysts.

9.
J Org Chem ; 72(15): 5709-14, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17580908

ABSTRACT

A furo-fused BINOL based chiral crown was developed as an enantioselective chiral sensor for phenylethylamine and ethyl ester of valine. Fusion of furan to BINOL has resulted in a highly stereo-discriminating backbone for the chiral crown developed. This chiral crown exhibited a fluorescence enhancement difference of 2.97 times between two enantiomers of phenylethylamine and 2.55 times between two enantiomers of ethyl ester of valine. The ratio of association constants for two diastereomeric complexes of two enantiomers of phenylethylamine was found to be 11.30, and the ratio for two enantiomers of ethyl ester of valine was 7.02.


Subject(s)
Fluorescent Dyes/chemistry , Phenethylamines/chemistry , Valine/chemistry , Crown Ethers/chemistry , Esters , Magnetic Resonance Spectroscopy , Mass Spectrometry , Models, Molecular , Spectrometry, Fluorescence , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...