Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biotechnol Prog ; 39(2): e3322, 2023 03.
Article in English | MEDLINE | ID: mdl-36564904

ABSTRACT

Alginate hydrogel is an attractive biomaterial for cell microencapsulation. The microarchitecture of hydrogels can regulate cellular functions. This study aims to investigate the applicability of sodium citrate buffer (SCB) as a culture medium supplement for modulating the microstructure of alginate microbeads to provide a favorable microenvironment for chondrogenic induction. The chondrocyte-laden microbeads, with and without TGF-ß3 incorporation, were produced through an encapsulator. The obtained small-sized microbeads (~300 µm) were exposed to a treatment medium containing SCB, composed of varied concentrations of sodium citrate (1.10-1.57 mM), sodium chloride (3.00-4.29 mM), and ethylenediaminetetraacetic acid (0.60-0.86 mM) to partially degrade their crosslinked structure for 3 days, followed by culture in a normal medium until day 21. Scanning electron microscope micrographs demonstrated a loose hydrogel network with an enhanced pore size in the SCB-treated microbeads. Increasing the concentration of SCB in the treatment medium reduced the calcium content of the microbeads via a Na+ /Ca2+ exchange process and improved the water absorption of the microbeads, resulting in a higher swelling ratio. All the tested SCB concentrations were non-cytotoxic. Increases in aggrecan and type II collagen gene expression and their corresponding extracellular matrix accumulation, glycosaminoglycans, and type II collagen were vividly detected in the TGF-ß3-containing microbeads with increasing SCB concentrations in the treatment medium. Our findings highlighted that the combination of SCB treatment and TGF-ß3 incorporation in the chondrocyte-laden microbeads is a promising strategy for enhancing cartilage regeneration, which may contribute to a versatile application in cell delivery and tissue engineering.


Subject(s)
Chondrocytes , Hydrogels , Chondrocytes/metabolism , Hydrogels/pharmacology , Hydrogels/chemistry , Collagen Type II/metabolism , Alginates/pharmacology , Alginates/chemistry , Transforming Growth Factor beta3/metabolism , Transforming Growth Factor beta3/pharmacology , Sodium Citrate/metabolism , Cartilage/metabolism , Tissue Engineering/methods , Regeneration
2.
Biotechnol Prog ; 38(3): e3240, 2022 05.
Article in English | MEDLINE | ID: mdl-35073456

ABSTRACT

The dedifferentiation of articular chondrocytes during in vitro expansion deteriorates the hyaline cartilage regeneration. Many approaches have been developed to enhance the redifferentiation of chondrocytes. In this study, a new and effective protocol to improve the redifferentiation of porcine chondrocytes in a pellet form was established. Pellets were initially treated in the modified culture media containing ternary mixtures, binary mixtures, or single reagents of sodium citrate (SCi), sodium chloride (SCh), and ethylenediaminetetraacetic acid (EDTA) at varied concentrations during the first 3 days of culture, followed by a normal culture medium until 21 days. Viability, proliferation, cartilaginous gene expression, extracellular matrix formation, and morphology of treated cell pellets were comparatively examined. Chondrocytes exposed to SCi, SCh, and EDTA individually or in combinations of two or three chemicals were non-cytotoxic when the concentration ranges of the chemicals were 1.83-2.75, 5.00-7.50, and 1.00-1.50 mM, respectively. Cells treated with the modified media containing EDTA alone and EDTA-containing mixtures enhanced glycosaminoglycan production as well as upregulated cartilaginous gene expression, despite their low proliferation rates. Overall, when all three reagents were in use, a pronounced synergistic effect on the activations of glycosaminoglycan accumulation and type II collagen production was explicitly observed at most, particularly when cells were cultured in the medium containing SCi, SCh, and EDTA at concentrations of 2.20, 6.00, and 1.20 mM, respectively. With a use of this protocol, the redifferentiation of articular chondrocytes for regeneration of hyaline cartilage for tissue engineering applications could be readily achieved.


Subject(s)
Cartilage, Articular , Chondrocytes , Animals , Cell Differentiation , Cells, Cultured , Chondrocytes/metabolism , Edetic Acid/pharmacology , Glycosaminoglycans/metabolism , Glycosaminoglycans/pharmacology , Swine , Tissue Engineering/methods
3.
J Mater Sci Mater Med ; 30(12): 128, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31776772

ABSTRACT

Biodegradable poly(ε-caprolactone) (PCL) has been increasingly investigated as a promising scaffolding material for articular cartilage tissue repair. However, its use can be limited due to its surface hydrophobicity and topography. In this study, 3D porous PCL scaffolds fabricated by a fused deposition modeling (FDM) machine were enzymatically hydrolyzed using two different biocatalysts, namely Novozyme®435 and Amano lipase PS, at varied treatment conditions in a pH 8.0 phosphate buffer solution. The improved surface topography and chemistry of the PCL scaffolds were anticipated to ultimately boost the growth of porcine articular chondrocytes and promote the chondrogenic phenotype during cell culture. Alterations in surface roughness, wettability, and chemistry of the PCL scaffolds after enzymatic treatment were thoroughly investigated using several techniques, e.g., SEM, AFM, contact angle and surface energy measurement, and XPS. With increasing enzyme content, incubation time, and incubation temperature, the surfaces of the PCL scaffolds became rougher and more hydrophilic. In addition, Novozyme®435 was found to have a higher enzyme activity than Amano lipase PS when both were used in the same enzymatic treatment condition. Interestingly, the enzymatic degradation process rarely induced the deterioration of compressive strength of the bulk porous PCL material and slightly reduced the molecular weight of the material at the filament surface. After 28 days of culture, both porous PCL scaffolds catalyzed by Novozyme®435 and Amano lipase PS could facilitate the chondrocytes to not only proliferate properly, but also function more effectively, compared with the non-modified porous PCL scaffold. Furthermore, the enzymatic treatments with 50 mg of Novozyme®435 at 25 °C from 10 min to 60 min were evidently proven to provide the optimally enhanced surface roughness and hydrophilicity most significantly favorable for induction of chondrogenic phenotype, indicated by the greatest expression level of cartilage-specific gene and the largest production of total glycosaminoglycans.


Subject(s)
Chondrocytes/physiology , Chondrogenesis/physiology , Polyesters , Tissue Scaffolds , Animals , Biocompatible Materials , Cell Adhesion , Cell Proliferation , Cells, Cultured , Materials Testing , Surface Properties , Swine
4.
Tissue Eng Part A ; 24(11-12): 968-978, 2018 06.
Article in English | MEDLINE | ID: mdl-29279011

ABSTRACT

We previously developed a 14-day culture protocol under potentially GMP, chemically defined conditions, to generate chondroprogenitors from human embryonic stem cells (hESCs). In vivo work has confirmed the cartilage repair capacity of these cells in a nude rat osteochondral defect model. Aiming to enhance hESC-chondrogenesis, we screened a range of extracellular matrix (ECM) molecules for their ability to support differentiation of hESCs toward chondrocytes. We identified two novel ECM protein fragments that supported hESC-chondrogenesis: Fibronectin III (fibronectin 7-14 protein fragments, including the RGD domain, syndecan-binding domain, and heparin-binding domain) and fibrillin-1 (FBN1) fragment PF8 (encoded by exons 30-38, residues 1238-1605, which contains the RGD motif but not heparin-binding site). These two protein fragments support hESC-chondrogenesis compared with the substrates routinely used previously (a mixture of fibronectin and gelatin) in our directed chondrogenic protocol. We have identified recombinant fibronectin fragment (FN III) and FBNI fragment (PF8) as alternative coating substrates to promote expression of genes known to regulate chondrocytes and code for chondrocyte ECM components. These recombinant protein fragments are likely to have better batch to batch stability than full-length molecules, especially where extracted from tissue/serum.


Subject(s)
Chondrogenesis/drug effects , Extracellular Matrix Proteins/chemistry , Cartilage/drug effects , Cartilage/metabolism , Cell Differentiation/drug effects , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Fibronectins/metabolism , Humans
5.
J Biomed Mater Res B Appl Biomater ; 105(5): 1141-1150, 2017 07.
Article in English | MEDLINE | ID: mdl-28609018

ABSTRACT

In this study, poly(ε-caprolactone)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PCL/PHBV) blended porous scaffolds were fabricated by fused deposition modeling (FDM). PCL/PHBV filaments, initially prepared at different weight ratios, that is, 100/0, 75/25, 50/50, and 25/75, were fabricated by the lay-down pattern of 0/90/45/135° to obtain scaffolds with dimension of 6.0 × 6.0 × 2.5 mm3 and average filament diameters and channel sizes in the ranges of 370-390 µm and 190-210 µm, respectively. To enhance the surface hydrophilicity of the materials, the scaffolds were subsequently subjected to a low pressure oxygen plasma treatment. The untreated and plasma-treated scaffolds were comparatively characterized, in terms of surface properties, mechanical strength, and biological properties. From SEM, AFM, water contact angle, and XPS results, the surface roughness, wettability, and hydrophilicity of the blended scaffolds were found to be enhanced after plasma treatment, while the compressive strength of the scaffolds was scarcely changed. It was, however, found to increase with an increasing content of PHBV incorporated. The porcine chondrocytes exhibited higher proliferative capacity and chondrogenic potential when being cultured on the scaffolds with greater PHBV contents, especially when they were plasma-treated. The PCL/PHBV scaffolds were proven to possess good physical, mechanical, and biological properties that could be appropriately used in articular cartilage regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1141-1150, 2017.


Subject(s)
Chondrocytes/metabolism , Models, Biological , Polyesters/chemistry , Tissue Scaffolds/chemistry , Animals , Chondrocytes/cytology , Swine
6.
J Biomater Sci Polym Ed ; 27(7): 675-91, 2016.
Article in English | MEDLINE | ID: mdl-26838814

ABSTRACT

The major concern related to biodegradable bone substitute materials is the loss of mechanical strength which can be undesirable when occurring too quickly before new bone formation. In this study, the multifunctional lactide oligomers having 2, 3, and 4 arms end capped with methacrylate groups were synthesized with the aim of improving the degradation properties. Their composites with hydroxyapatite (HA) were photopolymerized and subjected to accelerated degradation at 60 °C. The results showed that increasing number of arms significantly improved thermal and mechanical properties as well as biocompatibility of the composites. All composites although varying in number of arms had similar levels of bone-specific gene expression and calcification indicating their equal bioactivity in supporting bone formation. The high HA content in the composites was proposed to be responsible for enhanced osteoblast response, and this tended to suppress the effects of polymeric structure.


Subject(s)
Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Durapatite/chemistry , Mechanical Phenomena , Photochemical Processes , Polyesters/chemistry , 3T3 Cells , Animals , Cell Differentiation/drug effects , Drug Stability , Kinetics , Mice , Temperature
7.
Biomed Mater Eng ; 26(1-2): 31-8, 2015.
Article in English | MEDLINE | ID: mdl-26484553

ABSTRACT

The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed.


Subject(s)
Bone Substitutes/chemical synthesis , Bone Substitutes/toxicity , Durapatite/chemistry , Durapatite/toxicity , Printing, Three-Dimensional , Tissue Scaffolds , 3T3 Cells , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/toxicity , Cell Survival/drug effects , Compressive Strength , Materials Testing , Mice , Photography/methods , Porosity , Stress, Mechanical , Tensile Strength
8.
J Biomed Mater Res A ; 103(7): 2322-32, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25394663

ABSTRACT

Enhancement of porcine chondrocyte growth, distribution and functions within polycaprolactone (PCL) scaffolds was attempted using alkaline hydrolysis and oxygen plasma treatment. The hydrolysis of PCL was performed either before or after scaffold fabrication in the preparations of pre-hydrolyzed PCL (pre-HPCL) or post-HPCL scaffolds, respectively. The PCL, pre-HPCL, and post-HPCL scaffolds were subsequently plasma-treated to yield plasma-treated PCL, plasma-treated pre-HPCL, and plasma-treated post-HPCL scaffolds, respectively. All scaffolds were comparatively characterized, in terms of surface morphology, hydrophilicity, and atomic composition using scanning electron microscopy, contact angle measurement and X-ray photoelectron spectroscopy, respectively. The interactions of chondrocytes with individual scaffolds were assessed, in terms of cartilage-gene expression and cartilaginous matrix production using reverse transcription polymerase chain reaction analysis and glycosaminoglycans (GAGs) assay, respectively. The cell infiltration and cartilaginous matrix distribution were investigated by histological and immunofluorescence analysis. The results revealed that the plasma treatment exhibited a more prominent effect on the enhancement of surface roughness and hydrophilicity of the scaffolds than the alkaline hydrolysis. The scaffolds subjected to both surface treatments stimulated the cells to secret more GAGs and type II collagen. The sequence of hydrolysis of PCL also evidently played a crucial role in the hydrophilicity of the materials and the cartilage-gene expression and cartilaginous matrix production of the cultured chondrocytes. The hydrolysis of PCL prior to the fabrication, followed by the oxygen plasma treatment of the resulting fabricated scaffold, yielded plasma-treated pre-HPCL scaffold with homogeneous hydrophilic characteristics all over the material. Consequently, the cells could proliferate well, infiltrate most deeply and ultimately produce the highest amounts of the cartilage-specific substances throughout this scaffold.


Subject(s)
Cell Proliferation , Chondrocytes/cytology , Polyesters/metabolism , Tissue Scaffolds , Animals , Surface Properties , Swine
9.
J Biomed Mater Res B Appl Biomater ; 102(3): 604-11, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24136655

ABSTRACT

The merging of stereolithography (SLA) technology to the medical field certainly benefits the manufacturing of parts, especially those patient-specific for the clinical use. This technique, however, has hardly been exploited medically due to a limited number of biodegradable resins for SLA processing. To extend application of SLA in the biomedical field, photocurable oligolactide resins were developed and examined for biodegradation and biocompatibility. The degradation was studied by monitoring the changes in weight loss, and thermal and mechanical properties of the photocured specimens in phosphate buffered saline (PBS) at 37°C. The results demonstrated that a resin composition played an important role in degradation, and the retarded degradation rate was observed for the highly crosslinked resin containing hydroxyapatite (HA). The less cytotoxic sample was also obtained from the resin with higher content of HA. These findings suggest the possible use of the developed photocurable oligolactide resins in SLA manufacturing of biodegradable implants, where their degradation behaviors can be designed by varying the resin composition.


Subject(s)
Composite Resins/chemistry , Dioxanes/chemistry , Hyaluronic Acid/chemistry , Algorithms , Animals , Biodegradable Plastics , Cell Survival , Coloring Agents , Composite Resins/toxicity , Dioxanes/toxicity , Gels , Hot Temperature , Hyaluronic Acid/toxicity , Magnetic Resonance Spectroscopy , Materials Testing , Mechanical Phenomena , Mice , Microscopy, Electron, Scanning , Molecular Weight , NIH 3T3 Cells , Tetrazolium Salts , Thermogravimetry , Thiazoles
10.
J Biomed Mater Res A ; 98(2): 185-91, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21548069

ABSTRACT

The dressing prepared from GTMAC modified chitin-PAA was introduced with the aim of facilitating wound healing, particularly those effectively absorbing exudates, maintaining a moist wound environment and controlling bacterial proliferation. Chitin was chemically modified with acrylic acid to encourage a moist wound healing environment. The highly water-absorbable resulting product (chitin-PAA) was further reacted with glycidyltrimethylammonium chloride (GTMAC) to impart antibacterial activities. The final product, chitin-PAA-GTMAC was characterized by the techniques of Fourier Transform Infrared (FTIR), solid state (15) N NMR, and elemental analysis. Their cytotoxicity and antibacterial activities against S. epidermidis and E. coli were evaluated which found increasing effects in those properties with increasing degree substitution of GTMAC. All materials also showed good blood-clotting ability. The collagen gel contraction assay was used to analyze the behavior of fibroblasts after contact with the gels. The extent of the gel contraction as well as the examination of the secreted interleukin-8 (IL-8) and transforming growth factor-ß1 (TGF-ß1) were investigated. The results showed that chitin-PAA modified with GTMAC could stimulate the production of IL-8, but TGF-ß1. Fibroblasts presented normal spreading and formation of cellular processes in the collagen gels with all of the modifications. Furthermore, all modified gels except for the highest GTMAC content gel [chitin-PAA-GTMAC (1:20)] were found a greater extent in gel contraction than the unmodified chitin-PAA. It suggested the promoting effect of GTMAC on cell proliferation if the GTMAC content in the gel was not too high, that is, the mole ratio of glucosamine to GTMAC of the gel should not greater than 1:10.


Subject(s)
Acrylates/chemical synthesis , Acrylates/pharmacology , Chitin/chemical synthesis , Chitin/pharmacology , Epoxy Compounds/chemistry , Materials Testing/methods , Quaternary Ammonium Compounds/chemistry , Acrylates/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Blood Coagulation/drug effects , Cell Survival/drug effects , Collagen/chemistry , Elements , Escherichia coli/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gels , Humans , Interleukin-8/metabolism , Magnetic Resonance Spectroscopy , Mice , Microbial Sensitivity Tests , Rats , Spectroscopy, Fourier Transform Infrared , Staphylococcus epidermidis/drug effects , Transforming Growth Factor beta1/metabolism
11.
J Mater Sci Mater Med ; 18(5): 943-9, 2007 May.
Article in English | MEDLINE | ID: mdl-17221312

ABSTRACT

The interaction between L929 cells and carboxymethylchitosan (CM-chitosan)-based hydrogels, hydrogels from pure CM-chitosan and its blends, was examined in this study. Cytotoxicity of all materials was also assessed. The cellular morphology and behavior on the surfaces of the hydrogels were observed by scanning electron microscopy (SEM). The effects of various parameters, e.g., type and content of blended polymers, surface structure of hydrogels, and steaming condition used for the preparation of the hydrogels, on the cell-material response were investigated. The results of the cytotoxicity test revealed that all hydrogels were non-cytotoxic. The SEM micrographs demonstrated that the cells proliferated and spread onto a porous CM-chitosan sample. Better cell spreading was found on a flat surface of a CM-chitosan film. Rounded cells were observed when poly(vinyl alcohol) (PVA) was incorporated into CM-chitosan. Fewer cells were found when the content of PVA increased. Spherical clusters of the aggregated cells existed in the blends with ultra high viscosity carboxymethylcellulose (CM-cellulose). In contrast, with the use of low viscosity CM-cellulose, the cells appeared more spreading. The attached cells on the CM-chitosan film steamed at the highest temperature and longest period appeared to spread the most among all tested steaming conditions.


Subject(s)
Biocompatible Materials/pharmacology , Chitosan/analogs & derivatives , Fibroblasts/cytology , Fibroblasts/drug effects , Animals , Biocompatible Materials/chemistry , Cell Aggregation/drug effects , Cell Line , Cell Proliferation/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Hydrogels , Materials Testing , Mice , Microscopy, Electron, Scanning , Surface Properties , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...