Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Ayurveda Integr Med ; 15(3): 100986, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38805854

ABSTRACT

BACKGROUND: Shyonaka (Oroxylum indicum Vent) is widely used in Ayurveda and in ethnomedical practice for the treatment of inflammation, pain, diarrhea, non-healing ulcers, and cancer. Owing to the high prevalence of Epstein-Barr virus (EBV) infection in Nasopharyngeal carcinoma (NPC) patients, simultaneous targeting of proteins involved in both EBV replication and NPC proliferation might help to manage the disease effectively. OBJECTIVES: This study is designed to identify potential dual targeting inhibitors from Oroxylum indicum having the potential to inhibit both EBV and NPC. This study also attempted quantitative analysis of Shyonaka Bark Decoction (SBD) to confirm the presence of Baicalein and Chrysin which are predominant marker compounds of Shyonaka. METHODOLOGY: The HPLC analysis of stem bark and root bark of Oroxylum indicum was done to estimate the presence of marker compounds Baicalein and Chrysalin. The in-silico analysis included ADMET analysis followed by molecular docking of known compounds from Oroxylum indicum (retrieved from IMPPAT database) onto the target proteins of EBV (BHRF1, NEC1, dUTPase, Uracil DNA glycosylase) and NPC (COX-2, EGFR, and MDM2) using DOCK6 tool. Further validations were done using the molecular dynamics simulations of top screened molecules onto the selected target proteins using AMBER20 package and their corresponding MMGBSA binding free-energy values were calculated. RESULTS: The molecular docking revealed that the key molecules from the plant, scutellarein 7-rutinoside (S7R), scutellarin (SCU) and 6-hydroxyluteolin, Baicalein and 5,7-Dihydroxy-2-phenyl-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one (57D) are effectively intervening with the target proteins of EBV, one of the key causative factors of NPC and the NPC specific targets which have the potential to reduce tumor size and other consequences of NPC. The molecular dynamics simulations of S7R, Baicalein and 57D, Baicalein with MDM-2 protein and dUTPase protein, respectively, showed stable interactions between them which were further assessed by the binding energy calculations. CONCLUSION: Overall, the in-silico evaluation of these phytochemicals with target proteins indicates their potential to inhibit both EBV and NPC which needs further in-vitro and in-vivo validations.

2.
RSC Adv ; 13(37): 25778-25796, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37655355

ABSTRACT

The tRNA3Lys, which acts as a primer for human immunodeficiency virus type 1 (HIV-1) reverse transcription, undergoes structural changes required for the formation of a primer-template complex. Small molecules have been targeted against tRNA3Lys to inhibit the primer-template complex formation. The present study aims to understand the kinetics of the conformational landscape spanned by tRNA3Lys in apo form using molecular dynamics simulations and Markov state modeling. The study is taken further to investigate the effect of small molecules like 1,4T and 1,5T on structural conformations and kinetics of tRNA3Lys, and comparative analysis is presented. Markov state modeling of tRNA3Lys apo resulted in three metastable states where the conformations have shown the non-canonical structures of the anticodon loop. Based on analyses of ligand-tRNA3Lys interactions, crucial ion and water mediated H-bonds and free energy calculations, it was observed that the 1,4-triazole more strongly binds to the tRNA3Lys compared to 1,5-triazole. However, the MSM analysis suggest that the 1,5-triazole binding to tRNA3Lys has brought rigidity not only in the binding pocket (TΨC arm, D-TΨC loop) but also in the whole structure of tRNA3Lys. This may affect the easy opening of primer tRNA3Lys required for HIV-1 reverse transcription.

3.
ACS Omega ; 8(25): 22382-22405, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37396274

ABSTRACT

Antisense therapeutics treat a wide spectrum of diseases, many of which cannot be addressed with the current drug technologies. In the quest to design better antisense oligonucleotide drugs, we propose five novel LNA analogues (A1-A5) for modifying antisense oligonucleotides and establishing each with the five standard nucleic acids: adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U). Monomer nucleotides of these modifications were considered for a detailed Density Functional Theory (DFT)-based quantum chemical analysis to determine their molecular-level structural and electronic properties. A detailed MD simulation study was done on a 14-mer ASO (5'-CTTAGCACTGGCCT-3') containing these modifications targeting PTEN mRNA. Results from both molecular- and oligomer-level analysis clearly depicted LNA-level stability of the modifications, the ASO/RNA duplexes maintaining stable Watson-Crick base pairing preferring RNA-mimicking A-form duplexes. Notably, monomer MO isosurfaces for both purines and pyrimidines were majorly distributed on the nucleobase region in modifications A1 and A2 and in the bridging unit in modifications A3, A4, and A5, suggesting that A3/RNA, A4/RNA, and A5/RNA duplexes interact more with the RNase H and solvent environment. Accordingly, solvation of A3/RNA, A4/RNA, and A5/RNA duplexes was higher compared to that of LNA/RNA, A1/RNA, and A2/RNA duplexes. This study has resulted in a successful archetype for creating advantageous nucleic acid modifications tailored for particular needs, fulfilling a useful purpose of designing novel antisense modifications, which may overcome the drawbacks and improve the pharmacokinetics of existing LNA antisense modifications.

4.
J Mol Graph Model ; 107: 107945, 2021 09.
Article in English | MEDLINE | ID: mdl-34102527

ABSTRACT

In the present study, five novel LNA based antisense modifications have been proposed. A conformational search was carried out using TANGO, followed by geometry optimization using MOPAC. Based on their electronic energies the most stable conformation for each modification was identified. Further, DFT based full geometry optimization on the most stable conformations at the gas phase B3LYP/6-31G(d,p) using a Gaussian03 and single point energy calculations on the optimized structures at the solvent phase B3LYP/6-311G(d,p) level of theory were done to derive their quantum chemical descriptors using the Gaussian09. A comparison of global reactivity descriptors confirmed that the LNA based modifications were the most reactive. Base-pair stability was recorded by observing the binding energies and base-pairing conformations of modified GC base pairs at the B3LYP/6-311G(d,p) level of theory. Molecular dynamics simulations have been performed at the oligomer duplex level by incorporating individual modifications on 20-mer RNA-RNA duplexes using AMBER16. Free energy calculations of duplex structures suggested that incorporation of A2 modification into the RNA-RNA duplex increased the duplex binding affinity similar to LNA. Whereas, the A3 modification showed less binding compared to LNA but improved binding compared to MOE. This computational approach using quantum chemical methods may be very useful to propose better modifications than the existing ones before performing the experiments in the area of antisense technology.


Subject(s)
Oligonucleotides , RNA , Density Functional Theory , Nucleic Acid Conformation
5.
J Biomol Struct Dyn ; 39(15): 5735-5755, 2021 09.
Article in English | MEDLINE | ID: mdl-32679006

ABSTRACT

The COVID-19 pandemic has been responsible for several deaths worldwide. The causative agent behind this disease is the Severe Acute Respiratory Syndrome - novel Coronavirus 2 (SARS-CoV-2). SARS-CoV-2 belongs to the category of RNA viruses. The main protease, responsible for the cleavage of the viral polyprotein is considered as one of the hot targets for treating COVID-19. Earlier reports suggest the use of HIV anti-viral drugs for targeting the main protease of SARS-CoV, which caused SARS in the year 2002-2003. Hence, drug repurposing approach may prove to be useful in targeting the main protease of SARS-CoV-2. The high-resolution crystal structure of the main protease of SARS-CoV-2 (PDB ID: 6LU7) was used as the target. The Food and Drug Administration approved and SWEETLEAD database of drug molecules were screened. The apo form of the main protease was simulated for a cumulative of 150 ns and 10 µs open-source simulation data was used, to obtain conformations for ensemble docking. The representative structures for docking were selected using RMSD-based clustering and Markov State Modeling analysis. This ensemble docking approach for the main protease helped in exploring the conformational variation in the drug-binding site of the main protease leading to the efficient binding of more relevant drug molecules. The drugs obtained as top hits from the ensemble docking possessed anti-bacterial and anti-viral properties. This in silico ensemble docking approach would support the identification of potential candidates for repurposing against COVID-19.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Peptide Hydrolases , Protease Inhibitors/pharmacology , SARS-CoV-2
6.
RSC Adv ; 10(45): 26792-26803, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-35515752

ABSTRACT

The efforts towards developing a potential drug against the current global pandemic, COVID-19, have increased in the past few months. Drug development strategies to target the RNA dependent RNA polymerase (RdRP) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are being tried worldwide. The gene encoding this protein, is known to be conserved amongst positive strand RNA viruses. This enables an avenue to repurpose the drugs designed against earlier reported inhibitors of RdRP. One such strong inhibitor is remdesivir which has been used against EBOLA infections. The binding of remdesivir to RdRP of SARS-CoV-2 has been studied using the classical molecular dynamics and ensemble docking approach. A comparative study of the simulations of RdRP in the apo and remdesivir-bound form revealed blocking of the template entry site in the presence of remdesivir. The conformation changes leading to this event were captured through principal component analysis. The conformational and thermodynamic parameters supported the experimental information available on the involvement of crucial arginine, serine and aspartate residues belonging to the conserved motifs in RdRP functioning. The catalytic site comprising of SER 759, ASP 760, and ASP 761 (SDD) was observed to form strong contacts with remdesivir. The significantly strong interactions of these residues with remdesivir may infer the latter's binding similar to the normal nucleotides thereby remaining unidentified by the exonuclease activity of RdRP. The ensemble docking of remdesivir too, comprehended the involvement of similar residues in interaction with the inhibitor. This information on crucial interactions between conserved residues of RdRP with remdesivir through in silico approaches may be useful in designing inhibitors.

7.
J Biomol Struct Dyn ; 38(9): 2717-2736, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31315526

ABSTRACT

Sickle cell disease is an inherited disease caused by point mutation in hemoglobin (ß-globin gene). Under oxygen saturation, sickle hemoglobin form polymers, leading to rigid erythrocytes. The transition of the blood vessels is altered and initiated by the adhesion of erythrocytes, neutrophils and endothelial cells. Sickle Hemoglobin (HbS) polymerization is a major cause in red blood cells (RBC), promoting sickling and destruction of RBCs. Isoquercitrin, a medicinal bioactive compound found in various medicinal plants, has multiple health benefits. The present study examines the potential of isoquercitrin as an anti-sickle agent, showing a significant decrease in the rate of polymerization as well as sickling of RBCs. Isoquercitrin-induced graded alteration in absorbance and fluorescence of HbS, confirmed their interaction. A negative value of ΔG° strongly suggests that it is a spontaneous exothermic reaction induced by entropy. Negative ΔH° and positive ΔS° predicted that hydrogen and hydrophobic binding forces interfered with a hydrophobic microenvironment of ß6Val leading to polymerization inhibition of HbS. HbS-Isoquercitrin complex exhibits helical structural changes leading to destabilization of the HbS polymer as confirmed by CD spectroscopy. MST and DSC results indicate greater changes in thermophoretic mobility and thermal stability of sickle hemoglobin in the presence of isoquercitrin, respectively. These findings were also supported by molecular simulation studies using DOCK6 and GROMACS. Hence, we can conclude that isoquercitrin interacts with HbS through hydrogen bonding, which leads to polymerization inhibition. Consequently, isoquercitrin could potentially be used as a medication for the treatment of sickle cell disease.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antisickling Agents , Endothelial Cells , Hemoglobin, Sickle/genetics , Quercetin/analogs & derivatives , Spectrum Analysis
8.
J Comput Chem ; 40(7): 900-909, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30365168

ABSTRACT

Lead optimization is one of the crucial steps in the drug discovery pipeline. After identifying the lead molecule and obtaining its 2D geometry, understanding the best conformation it would attain in 3D still remains one of the most challenging steps in drug discovery. There have been multiple methods and algorithms that are directed toward achieving best conformation for the lead molecules. TANGO focuses on conformation generation and its optimization using semiempirical energy calculations. The conformation generation is based on torsion angle rotation of the exocyclic bonds. The energy calculations are performed using MOPAC. The unique feature of this tool lies in the implementation of Message Passing Interface (MPI) for conformation generation and semiempirical-based optimization. A well-defined architecture handling the input and output generation has been used. The master and slave approach to handle operations involved in torsion angle rotation and energy calculations has helped in load balancing the process of conformation generation. The benchmarking results suggest that TANGO scales significantly well across eight nodes with each node utilizing 16 cores. This tool may prove to very useful in high throughput generation of semiempirically optimized small molecule conformations. The use of semiempirical methods for optimization generates a conformational ensemble thereby helping to obtain stable and alternate stable conformers for a given ligand molecule. © 2018 Wiley Periodicals, Inc.

9.
J Biomol Struct Dyn ; 37(11): 2823-2836, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30284504

ABSTRACT

There is an extensive research carrying out on antisense technology and the molecules entering into clinical trials are increasing rapidly. Phosphorothioate (PS) is a chemical modification in which nonbridged oxygen is replaced with a sulfur, consequently providing resistance against nuclease activity. The 2'-4' conformationally restricted nucleoside has the structural features of both 2'-O-methoxy ethyl RNA (MOE), which shows good toxicity profile, and locked nucleic acid (LNA), which shows good binding affinity towards the target RNA. These modifications have been studied and suggested that they can be a potential therapeutic agents in antisense therapy. Mipomersen (ISIS 301012), which contains the novel nucleoside modification has been used to target to apolipoprotein (Apo B), which reduces LDL cholesterol by 6-41%. In this study, classical molecular dynamics (MD) simulations were performed on six different antisense gapmer/target-RNA oligomer duplexes (LNA-PS-LNA/RNA, RcMOE-PS-RcMOE/RNA, ScMOE-PS-ScMOE/RNA, MOE-PS-MOE/RNA, PS-DNA/RNA and DNA/RNA) to investigate the structural dynamics, stability and solvation properties. The LNA, MOE nucleotides present in respective duplexes are showing the structure of A-form and the PS-DNA nucleotides resemble the structure of B-form helix with respect to some of the helical parameters. Free energy calculations suggest that the oligomer, which contains LNA binds to the RNA strongly than other modifications as shown in experimental results. The MOE modified nucleotide, which although had a lower binding affinity but higher solvent accessible surface area (SASA) compared to the other modifications, may be influencing the toxicity and hence may be used it in Mipomersen, the second antisense molecule which is approved by FDA. Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Docking Simulation , Nucleic Acid Conformation , Oligonucleotides/chemistry , RNA, Antisense/chemistry , Humans , Thermodynamics
10.
J Biomol Struct Dyn ; 37(17): 4614-4631, 2019 10.
Article in English | MEDLINE | ID: mdl-30558488

ABSTRACT

Polymerization of hemoglobin S is a major cause of morbidity and mortality in sickle cell disease, which leads to sickling and destruction of red blood cell. Alizarin, a bioactive compound from Rubia cordifolia, is reported to be blood purifier. This study investigates the potential of alizarin as an anti-sickling agent, showing a significant decrease in the rate of polymerization, therefore inhibiting the rate of sickling with increasing concentration. Interaction studies indicated that the fluorescence intensity of sickle hemoglobin (Hb S) decreases gradually with increasing alizarin concentration. This suggests the static quenching, where binding constant and the number of binding sites were deduced at different temperatures. The negative values of Gibbs energy change (ΔG0) strongly suggest that it is entropy-driven spontaneous and exothermic reaction. Negative enthalpy (ΔH0) and positive entropy (ΔS0) stipulated that hydrogen and hydrophobic bonding forces were interfering in a hydrophobic micro-environment of ß6Val leading to Hb S polymerization inhibition. In circular dichroism (CD) spectra, Hb S in the presence of alizarin shows helical structural changes leading to destabilization of Hb S polymer. These findings were also supported by molecular docking simulation studies using DOCK6 and GROMACS. So, from these findings, we may conclude that alizarin interacts with Hb S through hydrogen bonding and leading to inhibition of Hb S polymerization. Consequently, alizarin may have potential use as an anti-sickle cell medication for sickle cell disorder. Communicated by Ramaswamy H. Sarma.


Subject(s)
Anthraquinones/metabolism , Hemoglobin, Sickle/metabolism , Models, Molecular , Spectrum Analysis , Adult , Anthraquinones/chemistry , Cell Death/drug effects , Cellulose/analogs & derivatives , Cellulose/chemistry , Circular Dichroism , Erythrocytes/metabolism , Hemoglobin, Sickle/chemistry , Humans , Hydrogen Bonding , Ligands , Molecular Dynamics Simulation , Osmotic Fragility , Polymerization , Protein Structure, Secondary , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics , Young Adult
11.
Biochim Biophys Acta ; 1849(9): 1209-18, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26170144

ABSTRACT

Slug, a five C2H2 zinc finger (ZF) motif transcription factor mediates cell migration in development, adult tissue repair and regeneration, as well as during tumor metastases through epithelial to mesenchymal transition. At the molecular level, this involves interactions with E-box (CACC/GGTG) consensus elements within target gene promoters to achieve transcriptional repression. However, precise elucidation of events involved in this DNA recognition and binding of specific promoters to regulate target genes have not been achieved. In the present study, we show that besides transcriptional repression, Slug can also directly activate its own expression by preferential binding to specific E-box elements in the distal binding region of its promoter. Our findings suggest that while the first ZF does not contribute to the transcription-associated functions of Slug, all the remaining four ZFs are involved in regulating the expression of target genes with ZF3 and ZF4 being more crucial than ZF2 or ZF5. We also report that recognition and binding preferences of ZFs are defined through intrinsic differences in the E-box core base pairs and/or flanking sequences, with the S2 E-box element being most critical during autoregulation. However, specific target E-box recognition and binding are also defined by the cellular context, which implies that in silico and/or biochemical DNA binding preferences may not necessarily be able to accurately predict in situ events. Our studies thus constitute a novel understanding of transcriptional regulation.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Transcription Factors/physiology , Cell Line, Tumor , Female , Gene Expression Regulation/genetics , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Promoter Regions, Genetic , Protein Binding , Snail Family Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic/genetics
12.
J Biomol Struct Dyn ; 33(2): 234-43, 2015.
Article in English | MEDLINE | ID: mdl-24404773

ABSTRACT

Ligand recognition in purine riboswitches is a complex process requiring different levels of conformational changes. Recent efforts in the area of purine riboswitch research have focused on ligand analogue binding studies. In the case of the guanine xanthine phosphoribosyl transferase (xpt) riboswitch, synthetic analogues that resemble guanine have the potential to tightly bind and subsequently influence the genetic expression of xpt mRNA in prokaryotes. We have carried out 25 ns Molecular Dynamics (MD) simulation studies of the aptamer domain of the xpt G-riboswitch in four different states: guanine riboswitch in free form, riboswitch bound with its cognate ligand guanine, and with two guanine analogues SJ1 and SJ2. Our work reveals novel interactions of SJ1 and SJ2 ligands with the binding core residues of the riboswitch. The ligands proposed in this work bind to the riboswitch with greater overall stability and lower root mean square deviations and fluctuations compared to guanine ligand. Reporter gene assay data demonstrate that the ligand analogues, upon binding to the RNA, lower the genetic expression of the guanine riboswitch. Our work has important implications for future ligand design and binding studies in the exciting field of riboswitches.


Subject(s)
Guanine/analogs & derivatives , Guanine/chemistry , Pentosyltransferases/chemistry , Riboswitch , Aptamers, Nucleotide/chemistry , Base Sequence , Gene Expression Regulation, Bacterial , Genes, Reporter , Guanine/physiology , Hydrogen Bonding , Inverted Repeat Sequences , Molecular Dynamics Simulation , Nucleic Acid Conformation , Pentosyltransferases/genetics , Thermodynamics , Transcriptional Activation , beta-Galactosidase/biosynthesis , beta-Galactosidase/genetics
13.
J Biomol Struct Dyn ; 31(6): 539-60, 2013.
Article in English | MEDLINE | ID: mdl-22888964

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) requires the human tRNA(3)(Lys) as a reverse transcriptase (RT) primer. The annealing of 3' terminal 18 nucleotides of tRNA(3)(Lys) with the primer binding site (PBS) of viral RNA (vRNA) is crucial for reverse transcription. Additional contacts between the A rich (A-loop) region of vRNA and the anticodon domain of tRNA(3)(Lys) are necessary, which show the specific requirement of tRNA(3)(Lys). The importance of modified nucleosides, present in tRNA(3)(Lys), in giving stability to the primer-template complex has been determined in earlier experiments. It has been observed that the PNA oligomer targeted to PBS of vRNA destabilized the crucial interactions between primer and template due to which the reverse transcription is inhibited. Molecular dynamics simulations have been carried out to study the effect of modified nucleosides on the vRNA-tRNA(3)(Lys) complex stability and the destabilization effect of PNA oligomer on the vRNA-tRNA(3)(Lys)-PNA complex. The root-mean-square deviation, hydrogen bonding, tertiary interactions, and free energy calculations of the simulation data support the experimental results. The analyses have revealed the structural changes in PBS region of vRNA which might be another strong reason for the inability of RT binding to 7F helix for its normal functioning of reverse transcription.


Subject(s)
DNA Primers/chemistry , HIV Reverse Transcriptase/chemistry , HIV-1/metabolism , Molecular Dynamics Simulation , Anticodon/chemistry , Binding Sites , DNA Primers/metabolism , HIV Reverse Transcriptase/metabolism , HIV-1/chemistry , Humans , Hydrogen Bonding , Nucleic Acid Conformation , RNA, Transfer/chemistry , RNA, Transfer/metabolism , RNA, Transfer, Lys/genetics , RNA, Transfer, Lys/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...