Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 19(4): e0299690, 2024.
Article in English | MEDLINE | ID: mdl-38574005

ABSTRACT

The emergence of content-centric network has resulted in a substantial increase in data transmission in both uplink and downlink directions. To tackle the ensuing challenges of network congestion and bottlenecks in backhaul links within Beyond Fifth Generation (B5G) networks, data caching has emerged as a popular solution. However, caching for uplink transmission in a distributed B5G scenario poses several challenges, including duplicate content matching and users' obliviousness about cached contents. Furthermore, it is important to maximize available space by caching the most popular contents in a distributed manner. In this paper, we propose two schemes for uplink transmission in distributed B5G SCNs. The first scheme focuses on content matching to eliminate duplicate contents among distributed caches, while the second scheme redistributes un-duplicated cached contents among distributed caches based on their available space and content's size. These approaches aim to enhance energy and spectral efficiency by reducing unnecessary uploads and optimizing distributed content caching, in addition to improve the content delivery. The analysis shows that the proposed schemes outperform the existing schemes by improving the cache hit ratio, cache hit probability, overall distributed cache efficiency, and diversity by 29.17%, 74.89%, 24.17%, and, 80%, respectively. Furthermore, the average throughput, Spectrum Efficiency (SE), and Energy Efficiency (EE) of the access network is improved by 17.78%, 18%, and 78%, respectively. Besides that, the EE and SE of both the sidehaul and backhaul links of the SBSs are also improved.

2.
3.
PLoS One ; 14(9): e0222009, 2019.
Article in English | MEDLINE | ID: mdl-31537014

ABSTRACT

Nowadays, because of the unpredictable nature of sensor nodes, propagating sensory data raises significant research challenges in Wireless Sensor Networks (WSNs). Recently, different cluster-based solutions are designed for the improvement of network stability and lifetime, however, most of the energy efficient solutions are developed for homogeneous networks, and use only a distance parameter for the data communication. Although, some existing solutions attempted to improve the selection of next-hop based on energy factor, nevertheless, such solutions are unstable and lack a reducing data delivery interruption in overloaded links. The aim of our proposed solution is to develop Reliable Cluster-based Energy-aware Routing (RCER) protocol for heterogeneous WSN, which lengthen network lifetime and decreases routing cost. Our proposed RCER protocol make use of heterogeneity nodes with respect to their energy and comprises of two main phases; firstly, the network field is parted in geographical clusters to make the network more energy-efficient and secondly; RCER attempts optimum routing for improving the next-hop selection by considering residual-energy, hop-count and weighted value of Round Trip Time (RTT) factors. Moreover, based on computing the measurement of wireless links and nodes status, RCER restore routing paths and provides network reliability with improved data delivery performance. Simulation results demonstrate significant development of RCER protocol against their competing solutions.


Subject(s)
Wireless Technology/instrumentation , Algorithms , Cluster Analysis , Computer Communication Networks , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL