Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Oncol ; 33(1): 42-56, 2022 01.
Article in English | MEDLINE | ID: mdl-34653632

ABSTRACT

BACKGROUND: Despite the importance of tumor-infiltrating T lymphocytes (TILs) in cancer biology, the relationship between TIL phenotypes and their prognostic relevance for localized non-small-cell lung cancer (NSCLC) has not been well established. PATIENTS AND METHODS: Fresh tumor and normal adjacent tissue was prospectively collected from 150 patients with localized NSCLC. Tissue was comprehensively characterized by high-dimensional flow cytometry of TILs integrated with immunogenomic data from multiplex immunofluorescence, T-cell receptor sequencing, exome sequencing, RNA sequencing, targeted proteomics, and clinicopathologic features. RESULTS: While neither the magnitude of TIL infiltration nor specific TIL subsets were significantly prognostic alone, the integration of high-dimensional flow cytometry data identified two major immunotypes (IM1 and IM2) that were predictive of recurrence-free survival independent of clinical characteristics. IM2 was associated with poor prognosis and characterized by the presence of proliferating TILs expressing cluster of differentiation 103, programmed cell death protein 1, T-cell immunoglobulin and mucin-domain containing protein 3, and inducible T-cell costimulator. Conversely, IM1 was associated with good prognosis and differentiated by an abundance of CD8+ T cells expressing cytolytic enzymes, CD4+ T cells lacking the expression of inhibitory receptors, and increased levels of B-cell infiltrates and tertiary lymphoid structures. While increased B-cell infiltration was associated with good prognosis, the best prognosis was observed in patients with tumors exhibiting high levels of both B cells and T cells. These findings were validated in patient tumors from The Cancer Genome Atlas. CONCLUSIONS: Our study suggests that although the number of infiltrating T cells is not associated with patient survival, the nature of the infiltrating T cells, resolved in distinct TIL immunotypes, is prognostically relevant in NSCLC and may inform therapeutic approaches to clinical care.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Prognosis
2.
Oncogene ; 38(28): 5748, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31175341

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Oncogene ; 36(14): 1925-1938, 2017 04 06.
Article in English | MEDLINE | ID: mdl-27694892

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths, primarily due to distant metastatic disease. Metastatic lung cancer cells can undergo an epithelial-to-mesenchymal transition (EMT) regulated by various transcription factors, including a double-negative feedback loop between the microRNA-200 (miR-200) family and ZEB1, but the precise mechanisms by which ZEB1-dependent EMT promotes malignancy remain largely undefined. Although the cell-intrinsic effects of EMT are important for tumor progression, the reciprocal dynamic crosstalk between mesenchymal cancer cells and the extracellular matrix (ECM) is equally critical in regulating invasion and metastasis. Investigating the collaborative effect of EMT and ECM in the metastatic process reveals increased collagen deposition in metastatic tumor tissues as a direct consequence of amplified collagen gene expression in ZEB1-activated mesenchymal lung cancer cells. In addition, collagen fibers in metastatic lung tumors exhibit greater linearity and organization as a result of collagen crosslinking by the lysyl oxidase (LOX) family of enzymes. Expression of the LOX and LOXL2 isoforms is directly regulated by miR-200 and ZEB1, respectively, and their upregulation in metastatic tumors and mesenchymal cell lines is coordinated to that of collagen. Functionally, LOXL2, as opposed to LOX, is the principal isoform that crosslinks and stabilizes insoluble collagen deposition in tumor tissues. In turn, focal adhesion formation and FAK/SRC signaling is activated in mesenchymal tumor cells by crosslinked collagen in the ECM. Our study is the first to validate direct regulation of LOX and LOXL2 by the miR-200/ZEB1 axis, defines a novel mechanism driving tumor metastasis, delineates collagen as a prognostic marker, and identifies LOXL2 as a potential therapeutic target against tumor progression.


Subject(s)
Amino Acid Oxidoreductases/physiology , Collagen/metabolism , Epithelial-Mesenchymal Transition/genetics , Extracellular Matrix/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Zinc Finger E-box-Binding Homeobox 1/physiology , Animals , Cells, Cultured , Extracellular Matrix/genetics , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Male , Mice , Neoplasm Invasiveness , Neoplasm Metastasis
4.
Oncogene ; 33(30): 3918-26, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-23995782

ABSTRACT

We built an in-house oligonucleotide array on which 394 genes were selected based on our Serial Analysis of Gene Expression (SAGE) data and previously reported array data and listed several genes related to cancer progression. Among these, we focused on SEC11A, which encodes the SPC18 protein. SEC11A mRNA expression was measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in gastric cancer (GC) tissue samples. Expression and distribution of SPC18 protein were investigated by immunohistochemical analysis in two independent GC cohorts (Hiroshima cohort, n=99 and Chiba cohort, n=989). To determine the effect of SPC18 on cell viability and invasiveness in vitro, MTT and Boyden chamber invasion assays were performed. To evaluate the influence of SPC18 on cell growth in vivo, GC cells were injected into severe combined immunodeficiency mice. Levels of TGF-α and EGF in media from the GC cells were measured by enzyme-linked immunosorbent assay (ELISA). Studies in human tissue revealed overexpression of SEC11A mRNA in 40% of 42 GC samples by qRT-PCR. Immunohistochemical analysis of SPC18 revealed that 26 and 20% of GC cases were SPC18-positive in the Hiroshima and Chiba cohorts, respectively. In both cohorts, the Kaplan-Meier analysis showed poorer survival in SPC18-positive GC cases than in SPC18-negative GC cases. Forced expression of SPC18 activates GC cell growth in vitro and in vivo. The levels of TGF-α in culture media from GC cells were reduced by knockdown of SPC18. These results indicate that SPC18 contributes to malignant progression through promotion of TGF-α secretion in GC.


Subject(s)
Peptide Hydrolases/metabolism , Stomach Neoplasms/metabolism , Transforming Growth Factor alpha/metabolism , Aged , Animals , Cell Line, Tumor , Cell Proliferation , Disease Progression , Female , Humans , Kaplan-Meier Estimate , Male , Mice , Mice, SCID , Multivariate Analysis , Neoplasm Transplantation , Peptide Hydrolases/genetics , Proportional Hazards Models , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Transcriptome , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...