Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 231, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396146

ABSTRACT

We present forecasts of land-use/land-cover (LULC) change for Switzerland for three time-steps in the 21st century under the representative concentration pathways 4.5 and 8.5, and at 100-m spatial and 14-class thematic resolution. We modelled the spatial suitability for each LULC class with a neural network (NN) using > 200 predictors and accounting for climate and policy changes. We improved model performance by using a data augmentation algorithm that synthetically increased the number of cells of underrepresented classes, resulting in an overall quantity disagreement of 0.053 and allocation disagreement of 0.15, which indicate good prediction accuracy. These class-specific spatial suitability maps outputted by the NN were then merged in a single LULC map per time-step using the CLUE-S algorithm, accounting for LULC demand for the future and a set of LULC transition rules. As the first LULC forecast for Switzerland at a thematic resolution comparable to available LULC maps for the past, this product lends itself to applications in land-use planning, resource management, ecological and hydraulic modelling, habitat restoration and conservation.

2.
Sci Total Environ ; 853: 158611, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36087665

ABSTRACT

Mountains are an essential component of the global life-support system. They are characterized by a rugged, heterogenous landscape with rapidly changing environmental conditions providing myriad ecological niches over relatively small spatial scales. Although montane species are well adapted to life at extremes, they are highly vulnerable to human derived ecosystem threats. Here we build on the manifesto 'World Scientists' Warning to Humanity', issued by the Alliance of World Scientists, to outline the major threats to mountain ecosystems. We highlight climate change as the greatest threat to mountain ecosystems, which are more impacted than their lowland counterparts. We further discuss the cascade of "knock-on" effects of climate change such as increased UV radiation, altered hydrological cycles, and altered pollution profiles; highlighting the biological and socio-economic consequences. Finally, we present how intensified use of mountains leads to overexploitation and abstraction of water, driving changes in carbon stock, reducing biodiversity, and impacting ecosystem functioning. These perturbations can provide opportunities for invasive species, parasites and pathogens to colonize these fragile habitats, driving further changes and losses of micro- and macro-biodiversity, as well further impacting ecosystem services. Ultimately, imbalances in the normal functioning of mountain ecosystems will lead to changes in vital biological, biochemical, and chemical processes, critically reducing ecosystem health with widespread repercussions for animal and human wellbeing. Developing tools in species/habitat conservation and future restoration is therefore essential if we are to effectively mitigate against the declining health of mountains.


Subject(s)
Biodiversity , Ecosystem , Animals , Humans , Climate Change , Water , Carbon , Conservation of Natural Resources
3.
PLoS One ; 17(7): e0271466, 2022.
Article in English | MEDLINE | ID: mdl-35857800

ABSTRACT

Changing climate and human demographics in the world's mountains will have increasingly profound environmental and societal consequences across all elevations. Quantifying current human populations in and near mountains is crucial to ensure that any interventions in these complex social-ecological systems are appropriately resourced, and that valuable ecosystems are effectively protected. However, comprehensive and reproducible analyses on this subject are lacking. Here, we develop and implement an open workflow to quantify the sensitivity of mountain population estimates over recent decades, both globally and for several sets of relevant reporting regions, to alternative input dataset combinations. Relationships between mean population density and several potential environmental covariates are also explored across elevational bands within individual mountain regions (i.e. "sub-mountain range scale"). Globally, mountain population estimates vary greatly-from 0.344 billion (<5% of the corresponding global total) to 2.289 billion (>31%) in 2015. A more detailed analysis using one of the population datasets (GHS-POP) revealed that in ∼35% of mountain sub-regions, population increased at least twofold over the 40-year period 1975-2015. The urban proportion of the total mountain population in 2015 ranged from 6% to 39%, depending on the combination of population and urban extent datasets used. At sub-mountain range scale, population density was found to be more strongly associated with climatic than with topographic and protected-area variables, and these relationships appear to have strengthened slightly over time. Such insights may contribute to improved predictions of future mountain population distributions under scenarios of future climatic and demographic change. Overall, our work emphasizes that irrespective of data choices, substantial human populations are likely to be directly affected by-and themselves affect-mountainous environmental and ecological change. It thereby further underlines the urgency with which the multitudinous challenges concerning the interactions between mountain climate and human societies under change must be tackled.


Subject(s)
Climate Change , Ecosystem , Humans , Population Density
4.
Sci Data ; 9(1): 149, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365674

ABSTRACT

A standardized delineation of the world's mountains has many applications in research, education, and the science-policy interface. Here we provide a new inventory of 8616 mountain ranges developed under the auspices of the Global Mountain Biodiversity Assessment (GMBA). Building on an earlier compilation, the presented geospatial database uses a further advanced and generalized mountain definition and a semi-automated method to enable globally standardized, transparent delineations of mountain ranges worldwide. The inventory is presented on EarthEnv at various hierarchical levels and allows users to select their preferred level of regional aggregation from continents to small subranges according to their needs and the scale of their analyses. The clearly defined, globally consistent and hierarchical nature of the presented mountain inventory offers a standardized resource for referencing and addressing mountains across basic and applied natural as well as social sciences and a range of other uses in science communication and education.

5.
Ecol Evol ; 12(2): e8590, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35222963

ABSTRACT

Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.

6.
Fish Fish (Oxf) ; 15(1): 65-96, 2014 Mar.
Article in English | MEDLINE | ID: mdl-26430388

ABSTRACT

Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.

7.
Trends Genet ; 28(11): 538-43, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22858414

ABSTRACT

Genetic association studies have become standard approaches to characterize the genetic and epigenetic variability associated with cancer development, including predispositions and mutations. However, the bewildering genetic and phenotypic heterogeneity inherent in cancer both magnifies the conceptual and methodological problems associated with these approaches and renders difficult the translation of available genetic information into a knowledge that is both biologically sound and clinically relevant. Here, we elaborate on the underlying causes of this complexity, illustrate why it represents a challenge for genetic association studies, and briefly discuss how it can be reconciled with the ultimate goals of identifying targetable disease pathways and successfully treating individual patients.


Subject(s)
Genetic Association Studies , Genetic Heterogeneity , Neoplasms/genetics , Humans , Mutation , Phenotype
8.
BioData Min ; 4: 25, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-21906309
9.
BioData Min ; 4(1): 14, 2011 Jun 13.
Article in English | MEDLINE | ID: mdl-21668977
10.
BioData Min ; 4: 6, 2011 Apr 10.
Article in English | MEDLINE | ID: mdl-21477341
11.
BioData Min ; 4: 7, 2011 Apr 10.
Article in English | MEDLINE | ID: mdl-21477342
12.
Dis Aquat Organ ; 81(2): 119-25, 2008 Aug 27.
Article in English | MEDLINE | ID: mdl-18924376

ABSTRACT

In recent years, numerous cases of morphological gonadal alterations in fish have been recorded throughout the world and across a wide range of species. In the whitefish Coregonus fatioi from the pre-alpine Lake Thun (Switzerland), the frequency of gonadal alterations is particularly high and the variety of alteration types large. Little is known about the proximal causes and the direct consequences of these morphological features on population persistence. In particular, the potential for the observed alterations to be the phenotypic expression of reduced genetic quality has not yet been addressed. In this study, we used offspring survival during embryogenesis as a proximate indicator of male genetic quality and tested whether the presence of gonadal alterations in males is an indicator of reduced quality. Embryos resulted from in vitro fertilizations of gametes from 126 males and females. We found no significant correlation between embryo survival and gonadal alteration in adults. Our findings suggest that in C. fatioi of Lake Thun, alterations in gonad morphology are not a phenotypic expression of variation in genetic quality.


Subject(s)
Congenital Abnormalities/veterinary , Fish Diseases/epidemiology , Gonads/abnormalities , Salmonidae/abnormalities , Animals , Congenital Abnormalities/epidemiology , Disorders of Sex Development/pathology , Disorders of Sex Development/veterinary , Embryo, Nonmammalian , Female , Fish Diseases/pathology , Fresh Water , Male , Salmonidae/genetics , Switzerland/epidemiology
13.
Genetica ; 134(1): 21-30, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18327648

ABSTRACT

Some models of sexual selection predict that individuals vary in their genetic quality and reveal some of this variation in their secondary sexual characteristics. Alpine whitefish (Coregonus sp.) develop breeding tubercles shortly before their spawning season. These tubercles are epidermal structures that are distributed regularly along the body sides of both males and females. There is still much unexplained variation in the size of breeding tubercles within both sexes and with much overlap between the sexes. It has been suggested that breeding tubercles function to maintain body contact between the mating partners during spawning, act as weapons for defence of spawning territories, or are sexual signals that reveal aspects of genetic quality. We took two samples of whitefish from their spawning place, one at the beginning and one around the peak of spawning season. We found that females have on average smaller breeding tubercles than males, and that tubercle size partly reveals the stage of gonad maturation. Two independent full-factorial breeding experiments revealed that embryo mortality was significantly influenced by male and female effects. This finding demonstrates that the males differed in their genetic quality (because offspring get nothing but genes from their fathers). Tubercle size was negatively linked to some aspects of embryo mortality in the first breeding experiment but not significantly so in the second. This lack of consistency adds to inconsistent results that were reported before and suggests that (i) some aspects of genetic quality are not revealed in breeding tubercles while others are, or (ii) individuals vary in their signaling strategies and the information content of breeding tubercles is not always reliable. Moreover, the fact that female whitefish have breeding tubercles of significant size while males seem to have few reasons to be choosy suggests that the tubercles might also serve some functions that are not linked to sexual signaling.


Subject(s)
Breeding , Salmonidae/genetics , Sexual Behavior, Animal , Animals , Copulation , Female , Genes , Genetic Variation , Heterozygote , Male , Mating Preference, Animal , Reproduction , Salmonidae/embryology , Seasons , Selection, Genetic , Sex Characteristics
14.
Evol Appl ; 1(4): 645-9, 2008 Nov.
Article in English | MEDLINE | ID: mdl-25567804

ABSTRACT

It is becoming increasingly recognized that fishing (and other forms of nonrandom harvesting) can have profound evolutionary consequences for life history traits. A recent and welcome publication provided the first description of how sexual selection might influence the outcome of fisheries-induced evolution (FIE). One of the main conclusions was that if sexual selection generates a positive relationship between body size and reproductive success, increased fishing pressure on large individuals causes stronger selection for smaller body size. Here, we re-evaluate the sexual selection interpretation of the relationship between body size and reproductive success, and suggest it may in fact be representative of a more general case of pure natural selection. The consequences of sexual selection on FIE are likely to be complicated and dynamic, and we provide additional perspectives to these new and exciting results. Selection differentials and trait variance are considered, with density-dependent and genetic effects on the strength and the direction of sexual selection given particular attention. We hope that our additional views on the role of sexual selection in FIE will encourage more theoretical and empirical work into this important application of evolutionary biology.

15.
Genetica ; 132(2): 199-208, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17628755

ABSTRACT

Some models of sexual selection predict that individuals vary in their genetic quality and reveal some of this variation in their secondary sexual characteristics. Alpine whitefish (Coregonus sp.) develop breeding tubercles shortly before their spawning season. These tubercles are epidermal structures that are distributed regularly along the body sides of both males and females. There is still much unexplained variation in the size of breeding tubercles within both sexes and with much overlap between the sexes. It has been suggested that breeding tubercles function to maintain body contact between the mating partners during spawning, act as weapons for defence of spawning territories, or are sexual signals that reveal aspects of genetic quality. We took two samples of whitefish from their spawning place, one at the beginning and one around the peak of spawning season. We found that females have on average smaller breeding tubercles than males, and that tubercle size partly reveals the stage of gonad maturation. Two independent full-factorial breeding experiments revealed that embryo mortality was significantly influenced by male and female effects. This finding demonstrates that the males differed in their genetic quality (because offspring get nothing but genes from their fathers). Tubercle size was negatively linked to some aspects of embryo mortality in the first breeding experiment but not significantly so in the second. This lack of consistency adds to inconsistent results that were reported before and suggests that (i) some aspects of genetic quality are not revealed in breeding tubercles while others are, or (ii) individuals vary in their signaling strategies and the information content of breeding tubercles is not always reliable. Moreover, the fact that female whitefish have breeding tubercles of significant size while males seem to have few reasons to be choosy suggests that the tubercles might also serve some functions that are not linked to sexual signaling.


Subject(s)
Reproduction/physiology , Salmonidae/genetics , Salmonidae/physiology , Seasons , Animals , Breeding , Embryo, Nonmammalian/embryology , Female , Genetic Variation , Male , Mating Preference, Animal/physiology , Organ Size , Salmonidae/anatomy & histology , Salmonidae/embryology , Sex Characteristics , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...