Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
MRS Bull ; 45(9): 783-784, 2020.
Article in English | MEDLINE | ID: mdl-33437128

ABSTRACT

Y. Shirley Meng, University of California, San Diego, has earned the 2020 Faraday Medal from the Royal Society of Chemistry. The Faraday Medal is awarded annually by the Electrochemistry Group of the Royal Society of Chemistry to an electrochemist working outside of the UK and Ireland in recognition of their outstanding original contributions and innovation as a mid-career researcher in any field of electrochemistry.

2.
Ultramicroscopy ; 192: 57-68, 2018 09.
Article in English | MEDLINE | ID: mdl-29890501

ABSTRACT

Pyrochlores characterized by the chemical formula A2B2O7 form an extended class of materials with interesting physical and chemical properties. The compound Bi1.5ZnNb1.5O7 is prototypical. Its excellent dielectric properties make it attractive, e.g. for capacitors, tunable microwave devices and electric-energy storage equipment. Bi1.5ZnNb1.5O7 shows an intriguing frequency-dispersive dielectric relaxation at 50 K ≤ T ≤ 250 K, which has been studied intensively but is still not fully understood. In this first study on a pyrochlore by atomic-resolution transmission electron microscopy we observe the Bi atoms on A sites since, due to their low nuclear charge, the contribution of Zn atoms to the contrast of these sites is negligible. We find in our [1¯00]and [112] oriented images that the position of the atomic intensity maxima do not coincide with the projected Wyckoff positions of the basic pyrochlore lattice. This supplies atomic-scale evidence for displacive disorder on split A-type sites. The Bi atoms are sessile, only occasionally we observe in time sequences of images jumps between individual split-site positions. The apertaining jump rate of the order of 0.1-1 Hz is by ten orders of magnitude lower than the values derived in the literature from Arrhenius plots of the low-temperature dielectric relaxation data. It is argued that these jumps are radiation induced. Therefore our observations are ruling out a contribution of Bi-atom jumps to low-temperature dielectric A sites-related relaxation. It is suggested that this relaxation is mediated by jumps of Zn atoms.

3.
Ultramicroscopy ; 176: 99-104, 2017 May.
Article in English | MEDLINE | ID: mdl-28187962

ABSTRACT

The application of combined chromatic and spherical aberration correction in high-resolution transmission electron microscopy enables a significant improvement of the spatial resolution down to 50 pm. We demonstrate that such a resolution can be achieved in practice at 200kV. Diffractograms of images of gold nanoparticles on amorphous carbon demonstrate corresponding information transfer. The Y atom pairs in [010] oriented yttrium orthoaluminate are successfully imaged together with the Al and the O atoms. Although the 57 pm pair separation is well demonstrated separations between 55 pm and 80 pm are measured. This observation is tentatively attributed to structural relaxations and surface reconstruction in the very thin samples used. Quantification of the resolution limiting effective image spread is achieved based on an absolute match between experimental and simulated image intensity distributions.

4.
Ultramicroscopy ; 151: 2-10, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25656990

ABSTRACT

This brief biographical sketch of Harald Rose on occasion of his 80th birthday describes some of the key events in an extraordinarily successful scientific life. Many of the theoretical concepts developed by him over the last 50 years have been fundamental for electron optics. Indeed, some of them have changed the whole complexion of this field and are fundamental to modern electron microscopy, both in TEM and in STEM mode. With this dedicated issue of Ultramicroscopy, the members of the electron microscopy community would like to thank Harald Rose for dedicating his professional life to their field and thereby enriching the life of those active in it.

5.
Science ; 331(6023): 1420-3, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-21415348

ABSTRACT

Low-dimensional ferroelectric structures are a promising basis for the next generation of ultrahigh-density nonvolatile memory devices. Depolarization fields, created by incompletely compensated charges at the surfaces and interfaces, depress the polarization of such structures. Theory suggests that under conditions of uncompensated surface charges, local dipoles can organize in flux-closure structures in thin films and vortex structures in nano-sized ferroelectrics, reducing depolarization fields. However, the continuous rotation of the dipoles required in vortex structures and the behavior of unit cell dipoles in flux-closure structures have never been experimentally established. By aberration-corrected transmission electron microscopy, we obtained experimental evidence for continuous rotation of the dipoles closing the flux of 180° domains in a ferroelectric perovskite thin film.

6.
Nat Mater ; 10(3): 165-6, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21336291
7.
Philos Trans A Math Phys Eng Sci ; 367(1903): 3735-53, 2009 Sep 28.
Article in English | MEDLINE | ID: mdl-19687063

ABSTRACT

Aberration-corrected transmission electron microscopy allows us to image the structure of matter at genuine atomic resolution. A prominent role for the imaging of crystalline samples is played by the negative spherical aberration imaging (NCSI) technique. The physical background of this technique is reviewed. The especially high contrast observed under these conditions owes its origin to an enhancing combination of amplitude contrast due to electron diffraction channelling and phase contrast. A number of examples of the application of NCSI are reviewed in order to illustrate the applicability and the state-of-the-art of this technique.

8.
Nat Mater ; 8(4): 260-2, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19308084

ABSTRACT

The efforts of microscopists have given aberration-corrected transmission electron microscopy the power to reveal atomic structures with unprecedented precision. It is now up to materials scientists to use this power for extracting physical properties from microscopic atomic arrangements.

9.
Science ; 321(5888): 506-10, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18653874

ABSTRACT

Seventy-five years after its invention, transmission electron microscopy has taken a great step forward with the introduction of aberration-corrected electron optics. An entirely new generation of instruments enables studies in condensed-matter physics and materials science to be performed at atomic-scale resolution. These new possibilities are meeting the growing demand of nanosciences and nanotechnology for the atomic-scale characterization of materials, nanosynthesized products and devices, and the validation of expected functions. Equipped with electron-energy filters and electron-energy-loss spectrometers, the new instruments allow studies not only of structure but also of elemental composition and chemical bonding. The energy resolution is about 100 milli-electron volts, and the accuracy of spatial measurements has reached a few picometers. However, understanding the results is generally not straightforward and only possible with extensive quantum-mechanical computer calculations.

10.
Nano Lett ; 8(3): 891-6, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18237147

ABSTRACT

We present the advancement of electron tomography for three-dimensional structure reconstruction of fullerene-like particles toward atomic-scale resolution. The three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is achieved by the combination of low voltage operation of the electron microscope with aberration-corrected phase contrast imaging. The method enables the study of defects and irregularities in the three-dimensional structure of individual fullerene-like particles on the scale of 2-3 A. Control over shape, size, and atomic architecture is a key issue in synthesis and design of functional nanoparticles. Transmission electron microscopy (TEM) is the primary technique to characterize materials down to the atomic level, albeit the images are two-dimensional projections of the studied objects. Recent advancements in aberration-corrected TEM have demonstrated single atom sensitivity for light elements at subångström resolution. Yet, the resolution of tomographic schemes for three-dimensional structure reconstruction has not surpassed 1 nm3, preventing it from becoming a powerful tool for characterization in the physical sciences on the atomic scale. Here we demonstrate that negative spherical aberration imaging at low acceleration voltage enables tomography down to the atomic scale at reduced radiation damage. First experimental data on the three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is presented. The method is applicable to the analysis of the atomic architecture of a wide range of nanostructures where strong electron channeling is absent, in particular to carbon fullerenes and inorganic fullerenes.


Subject(s)
Electrons , Fullerenes/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Microscopy, Electron, Transmission , Models, Molecular
11.
Nat Mater ; 7(1): 57-61, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18066068

ABSTRACT

Ferroelectrics are materials exhibiting spontaneous electric polarization due to dipoles formed by displacements of charged ions inside the crystal unit cell. Their exceptional properties are exploited in a variety of microelectronic applications. As ferroelectricity is strongly influenced by surfaces, interfaces and domain boundaries, there is great interest in exploring how the local atomic structure affects the electric properties. Here, using the negative spherical-aberration imaging technique in an aberration-corrected transmission electron microscope, we investigate the cation-oxygen dipoles near 180 degrees domain walls in epitaxial PbZr(0.2)Ti(0.8)O(3) thin films on the atomic scale. The width and dipole distortion across a transversal wall and a longitudinal wall are measured, and on this basis the local polarization is calculated. For the first time, a large difference in atomic details between charged and uncharged domain walls is reported.

12.
Nat Mater ; 6(1): 64-9, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17173031

ABSTRACT

Typically, polarization and strain in ferroelectric materials are coupled, leading to the generally accepted direct relation between polarization and unit-cell tetragonality. Here, by means of high-resolution transmission electron microscopy we map, on the unit-cell scale, the degree of tetragonality and the displacements of cations away from the centrosymmetry positions in an ultrathin epitaxial PbZr(0.2)Ti(0.8)O(3) film on a SrRuO(3) electrode layer deposited on a SrTiO(3) substrate. The lattice is highly tetragonal at the centre of the film, whereas it shows reduced tetragonality close to the interfaces. Most strikingly, we find that the maximum off-centre displacements for the central area of the film do not scale with the tetragonality. This challenges the fundamental belief in a strong polarization-tetragonality coupling in PbTiO(3)-based ferroelectrics, at such thicknesses. Furthermore, a systematic reduction of the atomic displacements is measured at the interfaces, suggesting that interface-induced suppression of the ferroelectric polarization plays a critical role in the size effect of nanoscale ferroelectrics.

13.
Microsc Microanal ; 11(6): 534-44, 2005 Dec.
Article in English | MEDLINE | ID: mdl-17481332

ABSTRACT

The structural properties of beta-phase tantalum nanocrystallites prepared by room temperature magnetron sputter deposition on amorphous carbon substrates are investigated at atomic resolution. For these purposes spherical aberration-corrected high-resolution transmission electron microscopy is applied in tandem with the numerical retrieval of the exit-plane wavefunction as obtained from a through-focus series of experimental micrographs. We demonstrate that recent improvements in the resolving power of electron microscopes enable the imaging of the atomic structure of beta-tantalum with column spacings of solely 0.127 nm with directly interpretable contrast features. For the first time ever, we substantiate the existence of grain boundaries of 30 degrees tilt type in beta-Ta whose formation may be well explained by atomic agglomeration processes taking place during sputter deposition.


Subject(s)
Nanoparticles , Carbon , Crystallization , Microscopy, Electron , Models, Molecular , Sensitivity and Specificity , Tantalum
14.
Microsc Microanal ; 10(2): 174-84, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15306044

ABSTRACT

A novel imaging mode for high-resolution transmission electron microscopy is described. It is based on the adjustment of a negative value of the spherical aberration C S of the objective lens of a transmission electron microscope equipped with a multipole aberration corrector system. Negative spherical aberration applied together with an overfocus yields high-resolution images with bright-atom contrast. Compared to all kinds of images taken in conventional transmission electron microscopes, where the then unavoidable positive spherical aberration is combined with an underfocus, the contrast is dramatically increased. This effect can only be understood on the basis of a full nonlinear imaging theory. Calculations show that the nonlinear contrast contributions diminish the image contrast relative to the linear image for a positive-C S setting whereas they reinforce the image contrast relative to the linear image for a negative-C S setting. The application of the new mode to the imaging of oxygen in SrTiO3 and YBa2Cu3O7 demonstrates the benefit to materials science investigations. It allows us to image directly, without further image processing, strongly scattering heavy-atom columns together with weakly scattering light-atom columns.


Subject(s)
Microscopy, Electron/methods , Computer Simulation , Crystallography/methods , Models, Theoretical , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...