Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Semin Oncol Nurs ; 40(2): 151615, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458882

ABSTRACT

OBJECTIVE: This trial aims to assess the acceptability, feasibility, and safety of BioVirtualPed, a biofeedback-based virtual reality (VR) game designed to reduce pain, anxiety, and fear in children undergoing medical procedures. METHODS: An Oculus Quest 2 headset was used in the VR experience, respiratory data was captured using an ADXL354 accelerometer, and these data were integrated into the game with ArdunioUno software. The sample of this study consisted of 15 pediatric oncology patients aged 6 to 12 years between July and August 2023. BioVirtualPed's acceptability, feasibility, and safety were evaluated through child and expert feedback, alongside metrics including the System Usability Scale, Wong-Baker Pain Rating Scale, Child Fear Scale, Child Anxiety Scale-Status, Satisfaction Scoring, and various feasibility and safety parameters. RESULTS: Regarding the acceptability, the expert evaluation showed a mean score of 122.5 ± 3.53, indicating high usability for the system. All children provided positive feedback, and both children and their mothers reported high satisfaction with using BioVirtualPed. The BioVirtualPed was feasible for reducing children's pain, fear, and anxiety levels. All the children complied with the game, and no one withdrew from the trial. BioVirtualPed did not cause symptoms of dizziness, vomiting, or nausea in children and was found to be safe for children. CONCLUSION: The findings showed that BioVirtualPed meets the following criteria: feasibility, user satisfaction, acceptability, and safety. It is a valuable tool to improve children's experience undergoing port catheter needle insertion procedures. IMPLICATION FOR NURSING PRACTICE: Integration of VR interventions with BioVirtualPed into routine nursing care practices has the potential to effectively manage the pain, anxiety, and fear experienced by children undergoing medical procedures. The safety, feasibility, and acceptability results are promising for further research and integration into pediatric healthcare practice.


Subject(s)
Biofeedback, Psychology , Feasibility Studies , Video Games , Virtual Reality , Humans , Child , Female , Male , Biofeedback, Psychology/methods , Anxiety/prevention & control , Fear , Neoplasms/psychology , Neoplasms/drug therapy
2.
Sci Rep ; 13(1): 21625, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38062067

ABSTRACT

Quantifying eye movement is important for diagnosing various neurological and ocular diseases as well as AR/VR displays. We developed a simple setup for real-time dynamic gaze tracking and accommodation measurements based on Purkinje reflections, which are the reflections from front and back surfaces of the cornea and the eye lens. We used an accurate eye model in ZEMAX to simulate the Purkinje reflection positions at different focus distances of the eye, which matched the experimental data. A neural network was trained to simultaneously predict vergence and accommodation using data collected from 9 subjects. We demonstrated that the use of Purkinje reflection coordinates in machine learning resulted in precise estimation. The proposed system accurately predicted the accommodation with an accuracy better than 0.22 D using subject's own data and 0.40 D using other subjects' data with two-point calibration in tests performed with 9 subjects in our setup.


Subject(s)
Accommodation, Ocular , Lens, Crystalline , Humans , Eye Movements , Cornea , Machine Learning
3.
Appl Opt ; 61(5): B50-B55, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35201125

ABSTRACT

Computer-generated holography algorithms often fall short in matching simulations with results from a physical holographic display. Our work addresses this mismatch by learning the holographic light transport in holographic displays. Using a camera and a holographic display, we capture the image reconstructions of optimized holograms that rely on ideal simulations to generate a dataset. Inspired by the ideal simulations, we learn a complex-valued convolution kernel that can propagate given holograms to captured photographs in our dataset. Our method can dramatically improve simulation accuracy and image quality in holographic displays while paving the way for physically informed learning approaches.

4.
Biomed Opt Express ; 12(1): 511-538, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33659087

ABSTRACT

Throughout the last decade, augmented reality (AR) head-mounted displays (HMDs) have gradually become a substantial part of modern life, with increasing applications ranging from gaming and driver assistance to medical training. Owing to the tremendous progress in miniaturized displays, cameras, and sensors, HMDs are now used for the diagnosis, treatment, and follow-up of several eye diseases. In this review, we discuss the current state-of-the-art as well as potential uses of AR in ophthalmology. This review includes the following topics: (i) underlying optical technologies, displays and trackers, holography, and adaptive optics; (ii) accommodation, 3D vision, and related problems such as presbyopia, amblyopia, strabismus, and refractive errors; (iii) AR technologies in lens and corneal disorders, in particular cataract and keratoconus; (iv) AR technologies in retinal disorders including age-related macular degeneration (AMD), glaucoma, color blindness, and vision simulators developed for other types of low-vision patients.

5.
Biomed Opt Express ; 12(12): 7752-7764, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-35003864

ABSTRACT

Cataract is the most common cause of preventable blindness and vision loss where the only treatment is surgical replacement of the natural lens with an intraocular lens. Computer-generated holography (CGH) enables to control phase, size, and shape of the light beam entering through the eye-pupil. We developed a holographic vision simulator to assess visual acuity for patients to experience the postoperative corrected vision before going through surgery. A holographically shaped light beam is directed onto the retina using small non-cataractous regions of the lens with the help of a pupil tracker. A Snellen chart hologram is shown to subjects at desired depth with myopia and hyperopia correction. Tests with 13 patients demonstrated substantial improvements in visual acuity and the simulator results are consistent with the post-operative vision tests. Holographic simulator overperforms the existing vision simulators, which are limited to static pinhole exit pupils and incapable of correcting aberrations.

6.
Front Neurol ; 11: 546123, 2020.
Article in English | MEDLINE | ID: mdl-33117256

ABSTRACT

It has been demonstrated that intrinsic auricular muscles zone stimulation (IAMZS) can improve the motor symptoms of Parkinson's disease (PD) patients who are examined with the Unified Parkinson's Disease Rating Scale (UPDRS) motor scores. In the present pilot study, using motion capture technology, we aimed to investigate the efficacy of IAMZS compared to medication alone or in combination with medication. Ten PD patients (mean age: 54.8 ± 10.1 years) were enrolled. Each participant participated in three different sessions: sole medication, sole stimulation-20 min of IAMZS, and combined IAMZS (20 min) and medication. Each session was performed on different days but at the same time to be aligned with patients' drug intake. Motion capture recording sessions took place at baseline, 20, 40, and 60 min. Statistical analysis was conducted using one-way repeated measures ANOVA. Bonferroni correction was implemented for pairwise comparisons. The sole medication was ineffective to improve gait-related parameters of stride length, stride velocity, stance, swing, and turning speed. In the sole-stimulation group, pace-related gait parameters were significantly increased at 20 and 40 min. These improvements were observed in stride length at 20 (p = 0.0498) and 40 (p = 0.03) min, and also in the normalized stride velocity at 40 min (p-value = 0.02). Stride velocity also tended to be significant at 20 min (p = 0.06) in the sole-stimulation group. Combined IAMZS and medication demonstrated significant improvements in all the time segments for pace-related gait parameters [stride length: 20 min (p = 0.04), 40 min (p = 0.01), and 60 min (p < 0.01); stride velocity: 20 min (p < 0.01), 40 min (p = 0.01), and 60 min (p < 0.01)]. These findings demonstrated the fast action of the IAMZS on PD motor symptoms. Moreover, following the termination of IAMZS, a prolonged improvement in symptoms was observed at 40 min. The combined use of IAMZS with medication showed the most profound improvements. The IAMZS may be particularly useful during medication off periods and may also postpone the long-term side effects of high-dose levodopa. A large scale multicentric trial is required to validate the results obtained from this pilot study. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03907007.

7.
Sci Rep ; 10(1): 14905, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32913335

ABSTRACT

Holographic display is the only technology that can offer true 3D with all the required depth cues. Holographic head-worn displays (HWD) can provide continuous depth planes with the correct stereoscopic disparity for a comfortable 3D experience. Existing HWD approaches have small field-of-view (FOV) and small exit pupil size, which are limited by the spatial light modulator (SLM). Conventional holographic HWDs are limited to about 20° × 11° FOV using a 4 K SLM panel and have fixed FOV. We present a new optical architecture that can overcome those limitations and substantially extend the FOV supported by the SLM. Our architecture, which does not contain any moving parts, automatically follows the gaze of the viewer's pupil. Moreover, it mimics human vision by providing varying resolution across the FOV resulting in better utilization of the available space-bandwidth product of the SLM. We propose a system that can provide 28° × 28° instantaneous FOV within an extended FOV (the field of view that is covered by steering the instantaneous FOV in space) of 60° × 40° using a 4 K SLM, effectively providing a total enhancement of > 3 × in instantaneous FOV area, > 10 × in extended FOV area and the space-bandwidth product. We demonstrated 20° × 20° instantaneous FOV and 40° × 20° extended FOV in the experiments.

8.
Article in English | MEDLINE | ID: mdl-32070955

ABSTRACT

Head-mounted holographic displays (HMHD) are projected to be the first commercial realization of holographic video display systems. HMHDs use liquid crystal on silicon (LCoS) spatial light modulators (SLM), which are best suited to display phase-only holograms (POH). The performance/watt requirement of a monochrome, 60 fps Full HD, 2-eye, POH HMHD system is about 10 TFLOPS/W, which is orders of magnitude higher than that is achievable by commercially available mobile processors. To mitigate this compute power constraint, display-ready POHs shall be generated on a nearby server and sent to the HMHD in compressed form over a wireless link. This paper discusses design of a feasible HMHD-based augmented reality system, focusing on compression requirements and per-pixel rate-distortion trade-off for transmission of display-ready POH from the server to HMHD. Since the decoder in the HMHD needs to operate on low power, only coding methods that have low-power decoder implementation are considered. Effects of 2D phase unwrapping and flat quantization on compression performance are also reported. We next propose a versatile PCM-POH codec with progressive quantization that can adapt to SLM-dynamic-range and available bitrate, and features per-pixel rate-distortion control to achieve acceptable POH quality at target rates of 60-200 Mbit/s that can be reliably achieved by current wireless technologies. Our results demonstrate feasibility of realizing a low-power, quality-ensured, multi-user, interactive HMHD augmented reality system with commercially available components using the proposed adaptive compression of display-ready POH with light-weight decoding.

9.
Sci Rep ; 9(1): 16733, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31700135

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Opt Express ; 27(11): 15172-15183, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31163717

ABSTRACT

We developed an off-axis diffractive lens using a micro-mirror array on a flat substrate. MMA creates an on-axis converging beam from a 45 degrees off-axis diverging illumination beam and functions similar to a large and bulky elliptical mirror. The array consists of individual micro-mirrors with normal directions that vary across the component. The size, normal direction and the center height of each micro-mirror are optimized to achieve a phase matching condition so that the smallest focal spot size is achieved at the design wavelength. Design can also be optimized for full color applications using a synthetic design wavelength. A sample MMA of size 3 mm by 5 mm is fabricated using grayscale lithography. The designed MMA is used to illuminate a computer-generated hologram in a near-eye display system. Experimental results verify the premises of the designed component.

11.
Sci Rep ; 9(1): 9012, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31227754

ABSTRACT

Single particle level visualization of biological nanoparticles such as viruses and exosomes is challenging due to their small size and low dielectric contrast. Fluorescence based methods are highly preferred, however they require labelling which may perturb the functionality of the particle of interest. On the other hand, wide-field interferometric microscopy can be used to detect sub-diffraction limited nanoparticles without using any labels. Here we demonstrate that utilization of defocused images enhances the visibility of nanoparticles in interferometric microscopy and thus improves the detectable size limit. With the proposed method termed as Depth Scanning Correlation (DSC) Interferometric Microscopy, we experimentally demonstrate the detection of sub-35nm dielectric particles without using any labels. Furthermore, we demonstrate direct detection of single exosomes. This label-free and high throughput nanoparticle detection technique can be used to sense and characterize biological particles over a range between a few tens to a few hundred nanometers, where conventional methods are insufficient.

12.
Opt Express ; 27(9): 12572-12581, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31052797

ABSTRACT

We present a novel head-mounted display setup that uses the pinhole imaging principle coupled with a low-latency dynamic pupil follower. A transmissive LCD is illuminated by a single LED backlight. LED illumination is focused onto the viewer's pupil to form an eyebox smaller than the average human pupil, thereby creating a pinhole display effect where objects at all distances appear in focus. Since nearly all the light is directed to the viewer's pupil, a single low-power LED for each primary color with 0.42 lumens total output is sufficient to create a bright and full-color display of 360 cd/m2 luminance. In order to follow the viewer's pupil, the eyebox needs to be steerable. We achieved a dynamic eyebox using an array of LEDs that is coupled with a real-time pupil tracker. The entire system is operated at 11 msec motion-to-photon latency, which meets the demanding requirements of the real-time pupil follower system. Experimental results effectively demonstrated our head-mounted pinhole display with 37° FOV and very high light efficiency, equipped with a pupil follower with low motion-to-photon latency.

13.
Sci Rep ; 9(1): 644, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30679684

ABSTRACT

Magnetooptical spatial light modulators (MOSLMs) are photonic devices that encode information in photonic waveforms by changing their amplitude and phase using magnetooptical Faraday or Kerr rotation. Despite the progress on both MO materials and switching methods, significant improvements on materials engineering and SLM design are needed for demonstrating low-power, multicolor, analog and high-contrast MOSLM devices. In this study, we present design rules and example designs for a high-contrast and large figure-of-merit MOSLM using three-color magnetophotonic crystals (MPC). We demonstrate for the first time, a three-defect MPC capable of simultaneously enhancing Faraday rotation, and high-contrast modulation at three fundamental wavelengths of red, green and blue (RGB) within the same pixel. We show using 2D finite-difference time-domain simulations that bismuth-substituted yttrium iron garnet films are promising for low-loss and high Faraday rotation MOSLM device in the visible band. Faraday rotation and loss spectra as well as figure-of-merit values are calculated for different magnetophotonic crystals of the form (H/L)p/(D/L)q/(H/L)p. After an optimization of layer thicknesses and MPC configuration, Faraday rotation values were found to be between 20-55° for losses below 20 dB in an overall thickness less than 1.5 µm including three submicron garnet defect layers. The experimental demonstration of our proposed 3-color MOSLM devices can enable bistable photonic projectors, holographic displays, indoor visible light communication devices, photonic beamforming for 5 G telecommunications and beyond.

14.
Opt Express ; 26(5): 5576-5590, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29529760

ABSTRACT

In this study, we propose a compact, lightweight scanning fiber microdisplay towards virtual and augmented reality applications. Our design that is tailored as a head-worn-display simply consists of a four-quadrant piezoelectric tube actuator through which a fiber optics cable is extended and actuated, and a reflective (or semi-reflective) ellipsoidal surface that relays the moving tip of the fiber onto the viewer's retina. The proposed display, offers significant advantages in terms of architectural simplicity, form-factor, fabrication complexity and cost over other fiber scanner and MEMS mirror counterparts towards practical realization. We demonstrate the display of various patterns with ∼VGA resolution and further provide analytical formulas for mechanical and optical constraints to compare the performance of the proposed scanning fiber microdisplay with that of MEMS mirror-based microdisplays. Also we discuss the road steps towards improving the performance of the proposed scanning fiber microdisplay to high-definition video formats (such as HD1440), which is beyond what has been achieved by MEMS mirror based laser scanning displays.

15.
Opt Express ; 26(2): 1161-1173, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29401993

ABSTRACT

We propose an integrated 3D display and imaging system using a head-mounted device and a special dual-purpose passive screen that can simultaneously facilitate 3D display and imaging. The screen is mainly composed of two optical layers, the first layer is a projection surface, which are the finely patterned retro-reflective microspheres that provide high optical gain when illuminated with head-mounted projectors. The second layer is an imaging surface made up of an array of curved mirrors, which form the perspective views of the scene captured by a head-mounted camera. The display and imaging operation are separated by performing polarization multiplexing. The demonstrated prototype system consists of a head-worn unit having a pair of 15 lumen pico-projectors and a 24MP camera, and an in-house designed and fabricated 30cm × 24cm screen. The screen provides bright display using 25% filled retro-reflective microspheres and 20 different perspective views of the user/scene using 5 × 4 array of convex mirrors. The real-time implementation is demonstrated by displaying stereo-3D content providing high brightness (up to 240 cd/m2) and low crosstalk (<4%), while 3D image capture is demonstrated by performing the computational reconstruction of the discrete free-viewpoint stereo pair displayed on a desktop or virtual reality display. Furthermore, the capture quality is determined by measuring the imaging MTF of the captured views and the capture light efficiency is calculated by considering the loss in transmitted light at each interface. Further developments in microfabrication and computational optics can present the proposed system as a unique mobile platform for immersive human-computer interaction of the future.

16.
J Biomed Opt ; 22(11): 1-8, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29127692

ABSTRACT

In clinics, blood coagulation time measurements are performed using mechanical measurements with blood plasma. Such measurements are challenging to do in a lab-on-a-chip (LoC) system using a small volume of whole blood. Existing LoC systems use indirect measurement principles employing optical or electrochemical methods. We developed an LoC system using mechanical measurements with a small volume of whole blood without requiring sample preparation. The measurement is performed in a microfluidic channel where two fibers are placed inline with a small gap in between. The first fiber operates near its mechanical resonance using remote magnetic actuation and immersed in the sample. The second fiber is a pick-up fiber acting as an optical sensor. The microfluidic channel is engineered innovatively such that the blood does not block the gap between the vibrating fiber and the pick-up fiber, resulting in high signal-to-noise ratio optical output. The control plasma test results matched well with the plasma manufacturer's datasheet. Activated-partial-thromboplastin-time tests were successfully performed also with human whole blood samples, and the method is proven to be effective. Simplicity of the cartridge design and cost of readily available materials enable a low-cost point-of-care device for blood coagulation measurements.


Subject(s)
Blood Coagulation , Hematologic Tests/instrumentation , Hematologic Tests/methods , Lab-On-A-Chip Devices , Optical Fibers , Humans , Microfluidics/instrumentation , Point-of-Care Systems
17.
Appl Opt ; 56(22): 6108-6113, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-29047803

ABSTRACT

We propose and demonstrate a light-efficient 3D display using a highly transparent desktop-sized augmented reality screen. The display consists of a specially designed transparent retro-reflective screen and a pair of low-power pico-projectors positioned close to the viewer's eyes to provide stereo views. The transfer screen is an optically clear sheet partially patterned with retro-reflective microspheres for high optical gain. The retro-reflective material buried in the screen reflects incident light back towards the projectors with a narrow scattering angle and facilitates the viewer to perceive a very bright content. The tabletop prototype mainly consists of an in-house fabricated large augmented reality (AR) screen (60 cm×40 cm) and a pair of laser-scanning 30 lumen pico-projectors. The display is tested for different viewing configurations, and different display parameters, such as retro-reflective coefficient, eye-box size, polarization maintainability, stereo crosstalk, and brightness, are examined. The AR prototype display provides 75% optical transparency, exceptional brightness (up to 1000 cd/m2 when viewed through beam splitters and 350 cd/m2 with bare eyes), and negligible crosstalk in 3D mode (<5% and <1% when viewed through beam splitters and polarizers, respectively) for the working distance of up to 2 m.

18.
ACS Sens ; 2(10): 1424-1429, 2017 10 27.
Article in English | MEDLINE | ID: mdl-28929734

ABSTRACT

Fluorescence based microarray detection systems provide sensitive measurements; however, variation of probe immobilization and poor repeatability negatively affect the final readout, and thus quantification capability of these systems. Here, we demonstrate a label-free and high-throughput optical biosensor that can be utilized for calibration of fluorescence microarrays. The sensor employs a commercial flatbed scanner, and we demonstrate transformation of this low cost (∼100 USD) system into an Interferometric Reflectance Imaging Sensor through hardware and software modifications. Using this sensor, we report detection of DNA hybridization and DNA directed antibody immobilization on label-free microarrays with a noise floor of ∼30 pg/mm2, and a scan speed of 5 s (50 s for 10 frames averaged) for a 2 mm × 2 mm area. This novel system may be used as a standalone label-free sensor especially in low-resource settings, as well as for quality control and calibration of microarrays in existing fluorescence-based DNA and protein detection platforms.


Subject(s)
Biosensing Techniques/instrumentation , DNA/analysis , High-Throughput Screening Assays/instrumentation , Microarray Analysis/instrumentation , Optical Imaging/methods , Biosensing Techniques/methods , DNA/chemistry , DNA/metabolism , Fluorescence , High-Throughput Screening Assays/methods , Humans , Interferometry , Light , Microarray Analysis/methods , Nucleic Acid Hybridization
19.
Front Hum Neurosci ; 11: 338, 2017.
Article in English | MEDLINE | ID: mdl-28701941

ABSTRACT

Background: Deep brain stimulation of the subthalamic nucleus (STN-DBS) and the pedunculopontine nucleus (PPN) significantly improve cardinal motor symptoms and postural instability and gait difficulty, respectively, in Parkinson's disease (PD). Objective and Hypothesis: Intrinsic auricular muscle zones (IAMZs) allow the potential to simultaneously stimulate the C2 spinal nerve, the trigeminal nerve, the facial nerve, and sympathetic and parasympathetic nerves in addition to providing muscle feedback and control areas including the STN, the PPN and mesencephalic locomotor regions. Our aim was to observe the clinical responses to IAMZ stimulation in PD patients. Method: Unilateral stimulation of an IAMZ, which includes muscle fibers for proprioception, the facial nerve, and C2, trigeminal and autonomic nerve fibers, at 130 Hz was performed in a placebo- and sham-controlled, double-blinded, within design, two-armed study of 24 PD patients. Results: The results of the first arm (10 patients) of the present study demonstrated a substantial improvement in Unified Parkinson's Disease Ratings Scale (UPDRS) motor scores due to 10 min of IAMZ electrostimulation (p = 0.0003, power: 0.99) compared to the placebo control (p = 0.130). A moderate to large clinical difference in the improvement in UPDRS motor scores was observed in the IAMZ electrostimulation group. The results of the second arm (14 patients) demonstrated significant improvements with dry needling (p = 0.011) and electrostimulation of the IAMZ (p < 0.001) but not with sham electrostimulation (p = 0.748). In addition, there was a significantly greater improvement in UPDRS motor scores in the IAMZ electrostimulation group compared to the IAMZ dry needling group (p < 0.001) and the sham electrostimulation (p < 0.001) groups. The improvement in UPDRS motor scores of the IAMZ electrostimulation group (ΔUPDRS = 5.29) reached moderate to high clinical significance, which was not the case for the dry needling group (ΔUPDRS = 1.54). In addition, both arms of the study demonstrated bilateral improvements in motor symptoms in response to unilateral IAMZ electrostimulation. Conclusion: The present study is the first demonstration of a potential role of IAMZ electrical stimulation in improving the clinical motor symptoms of PD patients in the short term.

20.
Opt Express ; 24(21): 24232-24241, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27828253

ABSTRACT

A transparent retro-reflective screen, which can be used as head-up-display (HUD) or a see-through screen for head mounted projection displays (HMPD) is proposed. The high optical gain of screen enables the use of low power projectors to produce very bright content. The screen assembly is based on retro-reflective microspheres, patterned on an optically clear substrate using steel stencil as a shadow mask. The incident light is retro-reflected as a narrow angular cone to create an eyebox for the viewer. The optical gain and transparency of screen is varied by changing the fill factor of the mask. The optical design and fabrication of the screen is presented. The retro-reflective and transmission characteristics of screen are evaluated. The impact of fill factor on screen luminance and transparency is studied. The screen provides high luminance (up to 280cd/m2 with 50% transparency) from about 40cm to >3m when used with a low power (15 lumen) mobile projector. Unlike regular diffusers, luminance remains nearly constant with projection distance. Furthermore, the screen offers prominent see-through capability with small degradation in modulation transfer function for transmitted light. For a particular camera and imaging configuration, MTF10 (10% cutoff) for 50% transparent screen is reduced from 37 cyc/deg to 30 cyc/deg when screen is inserted at an intermediate distance.

SELECTION OF CITATIONS
SEARCH DETAIL