Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338703

ABSTRACT

Phage therapeutics offer a potentially powerful approach for combating multidrug-resistant bacterial infections. However, to be effective, phage therapy must overcome existing and developing phage resistance. While phage cocktails can reduce this risk by targeting multiple receptors in a single therapeutic, bacteria have mechanisms of resistance beyond receptor modification. A rapidly growing body of knowledge describes a broad and varied arsenal of antiphage systems encoded by bacteria to counter phage infection. We sought to understand the types and frequencies of antiphage systems present in a highly diverse panel of Pseudomonas aeruginosa clinical isolates utilized to characterize novel antibacterials. Using the web-server tool PADLOC (prokaryotic antiviral defense locator), putative antiphage systems were identified in these P. aeruginosa clinical isolates based on sequence homology to a validated and curated catalog of known defense systems. Coupling this host bacterium sequence analysis with host range data for 70 phages, we observed a correlation between existing phage resistance and the presence of higher numbers of antiphage systems in bacterial genomes. We were also able to identify antiphage systems that were more prevalent in highly phage-resistant P. aeruginosa strains, suggesting their importance in conferring resistance.


Subject(s)
Bacteriophages , Biochemical Phenomena , Phage Therapy , Pseudomonas Infections , Humans , Bacteriophages/genetics , Pseudomonas aeruginosa , Pseudomonas Infections/therapy , Pseudomonas Infections/microbiology
2.
Microbiol Resour Announc ; 13(1): e0095423, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38032190

ABSTRACT

We describe the genome of a lytic phage EKq1 isolated on Klebsiella quasipneumoniae, with activity against Klebsiella pneumoniae. EKq1 is an unclassified representative of the class Caudoviricetes, similar to Klebsiella phages VLCpiS8c, phiKp_7-2, and vB_KleS-HSE3. The 48,244-bp genome has a GC content of 56.43% and 63 predicted protein-coding genes.

SELECTION OF CITATIONS
SEARCH DETAIL