Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
PLoS One ; 16(11): e0258263, 2021.
Article in English | MEDLINE | ID: mdl-34758033

ABSTRACT

Clinical and surveillance testing for the SARS-CoV-2 virus relies overwhelmingly on RT-qPCR-based diagnostics, yet several popular assays require 2-3 separate reactions or rely on detection of a single viral target, which adds significant time, cost, and risk of false-negative results. Furthermore, multiplexed RT-qPCR tests that detect at least two SARS-CoV-2 genes in a single reaction are typically not affordable for large scale clinical surveillance or adaptable to multiple PCR machines and plate layouts. We developed a RT-qPCR assay using the Luna Probe Universal One-Step RT-qPCR master mix with publicly available primers and probes to detect SARS-CoV-2 N gene, E gene, and human RNase P (LuNER) to address these shortcomings and meet the testing demands of a university campus and the local community. This cost-effective test is compatible with BioRad or Applied Biosystems qPCR machines, in 96 and 384-well formats, with or without sample pooling, and has a detection sensitivity suitable for both clinical reporting and wastewater surveillance efforts.


Subject(s)
COVID-19/virology , Ribonuclease P/genetics , SARS-CoV-2/genetics , Wastewater/virology , DNA Primers/genetics , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Specimen Handling/methods , Wastewater-Based Epidemiological Monitoring
3.
PLoS One ; 16(8): e0255690, 2021.
Article in English | MEDLINE | ID: mdl-34351984

ABSTRACT

Saliva is an attractive specimen type for asymptomatic surveillance of COVID-19 in large populations due to its ease of collection and its demonstrated utility for detecting RNA from SARS-CoV-2. Multiple saliva-based viral detection protocols use a direct-to-RT-qPCR approach that eliminates nucleic acid extraction but can reduce viral RNA detection sensitivity. To improve test sensitivity while maintaining speed, we developed a robotic nucleic acid extraction method for detecting SARS-CoV-2 RNA in saliva samples with high throughput. Using this assay, the Free Asymptomatic Saliva Testing (IGI FAST) research study on the UC Berkeley campus conducted 11,971 tests on supervised self-collected saliva samples and identified rare positive specimens containing SARS-CoV-2 RNA during a time of low infection prevalence. In an attempt to increase testing capacity, we further adapted our robotic extraction assay to process pooled saliva samples. We also benchmarked our assay against nasopharyngeal swab specimens and found saliva methods require further optimization to match this gold standard. Finally, we designed and validated a RT-qPCR test suitable for saliva self-collection. These results establish a robotic extraction-based procedure for rapid PCR-based saliva testing that is suitable for samples from both symptomatic and asymptomatic individuals.


Subject(s)
COVID-19 Testing/methods , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Adult , COVID-19/diagnosis , Female , Humans , Male , Mass Screening/methods , RNA/genetics , RNA/isolation & purification , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Robotics/methods , Saliva/chemistry , Specimen Handling/methods
6.
PLoS One ; 16(5): e0251296, 2021.
Article in English | MEDLINE | ID: mdl-34038425

ABSTRACT

Regular surveillance testing of asymptomatic individuals for SARS-CoV-2 has been center to SARS-CoV-2 outbreak prevention on college and university campuses. Here we describe the voluntary saliva testing program instituted at the University of California, Berkeley during an early period of the SARS-CoV-2 pandemic in 2020. The program was administered as a research study ahead of clinical implementation, enabling us to launch surveillance testing while continuing to optimize the assay. Results of both the testing protocol itself and the study participants' experience show how the program succeeded in providing routine, robust testing capable of contributing to outbreak prevention within a campus community and offer strategies for encouraging participation and a sense of civic responsibility.


Subject(s)
COVID-19/diagnosis , Program Evaluation , Saliva/virology , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , COVID-19 Testing/methods , Female , Humans , Male , Middle Aged , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Social Norms , Surveys and Questionnaires , Universities , Young Adult
7.
Sci Adv ; 7(12)2021 03.
Article in English | MEDLINE | ID: mdl-33741591

ABSTRACT

Neuronal tau reduction confers resilience against ß-amyloid and tau-related neurotoxicity in vitro and in vivo. Here, we introduce a novel translational approach to lower expression of the tau gene MAPT at the transcriptional level using gene-silencing zinc finger protein transcription factors (ZFP-TFs). Following a single administration of adeno-associated virus (AAV), either locally into the hippocampus or intravenously to enable whole-brain transduction, we selectively reduced tau messenger RNA and protein by 50 to 80% out to 11 months, the longest time point studied. Sustained tau lowering was achieved without detectable off-target effects, overt histopathological changes, or molecular alterations. Tau reduction with AAV ZFP-TFs was able to rescue neuronal damage around amyloid plaques in a mouse model of Alzheimer's disease (APP/PS1 line). The highly specific, durable, and controlled knockdown of endogenous tau makes AAV-delivered ZFP-TFs a promising approach for the treatment of tau-related human brain diseases.


Subject(s)
Alzheimer Disease , Transcription Factors , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Mice , Plaque, Amyloid/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Fingers/genetics , tau Proteins/genetics , tau Proteins/metabolism
8.
medRxiv ; 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33532798

ABSTRACT

Saliva is an attractive specimen type for asymptomatic surveillance of COVID-19 in large populations due to its ease of collection and its demonstrated utility for detecting RNA from SARS-CoV-2. Multiple saliva-based viral detection protocols use a direct-to-RT-qPCR approach that eliminates nucleic acid extraction but can reduce viral RNA detection sensitivity. To improve test sensitivity while maintaining speed, we developed a robotic nucleic acid extraction method for detecting SARS-CoV-2 RNA in saliva samples with high throughput. Using this assay, the Free Asymptomatic Saliva Testing (IGI-FAST) research study on the UC Berkeley campus conducted 11,971 tests on supervised self-collected saliva samples and identified rare positive specimens containing SARS-CoV-2 RNA during a time of low infection prevalence. In an attempt to increase testing capacity, we further adapted our robotic extraction assay to process pooled saliva samples. We also benchmarked our assay against the gold standard, nasopharyngeal swab specimens. Finally, we designed and validated a RT-qPCR test suitable for saliva self-collection. These results establish a robotic extraction-based procedure for rapid PCR-based saliva testing that is suitable for samples from both symptomatic and asymptomatic individuals.

9.
CRISPR J ; 4(1): 6-13, 2021 02.
Article in English | MEDLINE | ID: mdl-33616446

ABSTRACT

Genome editing using CRISPR-Cas9 has produced a functional cure for a small number of patients with sickle cell disease and beta-thalassemia. Rather than repairing the causative mutation, this striking outcome was attained by the knockout of a lineage-specific regulatory element for a gene, BCL11A, that controls fetal hemoglobin levels: a first example of clinical success in targeting a locus initially identified in a genome-wide association study, and formal proof of the "in the age of CRISPR, the entire genome is a druggable target" notion. This remarkable development, along with advancement to the clinic of several additional editing-based approaches to the hemoglobinopathies, highlights a sense of urgency in accelerating scientific, regulatory, and public health innovation that will allow broad and equitable access to editing-based cures.


Subject(s)
Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , CRISPR-Cas Systems , Gene Editing/methods , Clinical Trials as Topic , Genetic Therapy , Genome-Wide Association Study , Hemoglobinopathies/genetics , Humans , Mutation , United States , United States Food and Drug Administration , beta-Thalassemia/genetics , beta-Thalassemia/therapy
10.
PLoS One ; 16(1): e0245765, 2021.
Article in English | MEDLINE | ID: mdl-33497404

ABSTRACT

BACKGROUND: Colleges and universities across the country are struggling to develop strategies for effective control of COVID-19 transmission as students return to campus. METHODS AND FINDINGS: We conducted a prospective cohort study with students living on or near the UC Berkeley campus from June 1st through August 18th, 2020 with the goal of providing guidance for campus reopening in the safest possible manner. In this cohort, we piloted an alternative testing model to provide access to low-barrier, high-touch testing and augment student-driven testing with data-driven adaptive surveillance that targets higher-risk students and triggers testing notifications based on reported symptoms, exposures, or other relevant information. A total of 2,180 students enrolled in the study, 51% of them undergraduates. Overall, 6,247 PCR tests were administered to 2,178 students over the two-month period. Overall test positivity rate was 0.9%; 2.6% of students tested positive. Uptake and acceptability of regular symptom and exposure surveys was high; 98% of students completed at least one survey, and average completion rate was 67% (Median: 74%, IQR: 39%) for daily reporting of symptoms and 68% (Median: 75%, IQR: 40%) for weekly reporting of exposures. Of symptom-triggered tests, 5% were PCR-positive; of exposure-triggered tests, 10% were PCR-positive. The integrated study database augmented traditional contact tracing during an outbreak; 17 potentially exposed students were contacted the following day and sent testing notifications. At study end, 81% of students selected their desire "to contribute to UC Berkeley's response to COVID-19" as a reason for their participation in the Safe Campus study. CONCLUSIONS: Our results illustrate the synergy created by bringing together a student-friendly, harm reduction approach to COVID-19 testing with an integrated data system and analytics. We recommend the use of a confidential, consequence-free, incentive-based daily symptom and exposure reporting system, coupled with low-barrier, easy access, no stigma testing. Testing should be implemented alongside a system that integrates multiple data sources to effectively trigger testing notifications to those at higher risk of infection and encourages students to come in for low-barrier testing when needed.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Students , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , California/epidemiology , Cohort Studies , Communicable Disease Control , Contact Tracing , Humans , Prospective Studies , Surveys and Questionnaires , Universities
11.
medRxiv ; 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33330883

ABSTRACT

Commonly used RT-qPCR-based SARS-CoV-2 diagnostics require 2-3 separate reactions or rely on detection of a single viral target, adding time and cost or risk of false-negative results. Currently, no test combines detection of widely used SARS-CoV-2 E- and N-gene targets and a sample control in a single, multiplexed reaction. We developed the IGI-LuNER RT-qPCR assay using the Luna Probe Universal One-Step RT-qPCR master mix with publicly available primers and probes to detect SARS-CoV-2 N gene, E gene, and human RNase P (NER). This combined, cost-effective test can be performed in 384-well plates with detection sensitivity suitable for clinical reporting, and will aid in future sample pooling efforts, thus improving throughput of SARS-CoV-2 detection.

14.
Cell Rep ; 31(8): 107676, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32460018

ABSTRACT

The human genome encodes millions of regulatory elements, of which only a small fraction are active within a given cell type. Little is known about the global impact of chromatin remodelers on regulatory DNA landscapes and how this translates to gene expression. We use precision genome engineering to reawaken homozygously inactivated SMARCA4, a central ATPase of the human SWI/SNF chromatin remodeling complex, in lung adenocarcinoma cells. Here, we combine DNase I hypersensitivity, histone modification, and transcriptional profiling to show that SMARCA4 dramatically increases both the number and magnitude of accessible chromatin sites genome-wide, chiefly by unmasking sites of low regulatory factor occupancy. By contrast, transcriptional changes are concentrated within well-demarcated remodeling domains wherein expression of specific genes is gated by both distal element activation and promoter chromatin configuration. Our results provide a perspective on how global chromatin remodeling activity is translated to gene expression via regulatory DNA.


Subject(s)
Chromatin Assembly and Disassembly/genetics , DNA Helicases/metabolism , DNA/genetics , Gene Expression/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Humans
16.
Nat Med ; 25(7): 1131-1142, 2019 07.
Article in English | MEDLINE | ID: mdl-31263285

ABSTRACT

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin gene (HTT), which codes for the pathologic mutant HTT (mHTT) protein. Since normal HTT is thought to be important for brain function, we engineered zinc finger protein transcription factors (ZFP-TFs) to target the pathogenic CAG repeat and selectively lower mHTT as a therapeutic strategy. Using patient-derived fibroblasts and neurons, we demonstrate that ZFP-TFs selectively repress >99% of HD-causing alleles over a wide dose range while preserving expression of >86% of normal alleles. Other CAG-containing genes are minimally affected, and virally delivered ZFP-TFs are active and well tolerated in HD neurons beyond 100 days in culture and for at least nine months in the mouse brain. Using three HD mouse models, we demonstrate improvements in a range of molecular, histopathological, electrophysiological and functional endpoints. Our findings support the continued development of an allele-selective ZFP-TF for the treatment of HD.


Subject(s)
Alleles , Huntingtin Protein/genetics , Huntington Disease/therapy , Mutation , Transcription, Genetic , Zinc Fingers , Animals , Cells, Cultured , Disease Models, Animal , Female , Humans , Huntington Disease/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Neuroprotection , Trinucleotide Repeats
18.
Mol Ther Methods Clin Dev ; 10: 313-326, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30182035

ABSTRACT

In the present report, we carried out clinical-scale editing in adult mobilized CD34+ hematopoietic stem and progenitor cells (HSPCs) using zinc-finger nuclease-mediated disruption of BCL11a to upregulate the expression of γ-globin (fetal hemoglobin). In these cells, disruption of the erythroid-specific enhancer of the BCL11A gene increased endogenous γ-globin expression to levels that reached or exceeded those observed following knockout of the BCL11A coding region without negatively affecting survival or in vivo long-term proliferation of edited HSPCs and other lineages. In addition, BCL11A enhancer modification in mobilized CD34+ cells from patients with ß-thalassemia major resulted in a readily detectable γ-globin increase with a preferential increase in G-gamma, leading to an improved phenotype and, likely, a survival advantage for maturing erythroid cells after editing. Furthermore, we documented that both normal and ß-thalassemia HSPCs not only can be efficiently expanded ex vivo after editing but can also be successfully edited post-expansion, resulting in enhanced early in vivo engraftment compared with unexpanded cells. Overall, this work highlights a novel and effective treatment strategy for correcting the ß-thalassemia phenotype by genome editing.

SELECTION OF CITATIONS
SEARCH DETAIL
...