Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(38): 45498-45505, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37704020

ABSTRACT

Droplet-based microfluidics is leading the development of miniaturized, rapid, and sensitive version of enzyme-linked immunosorbent assays (ELISAs), a central method for protein detection. These assays involve the use of a functionalized surface able to selectively capture the desired analyte. Using the droplet's oil water interface as a capture surface requires designing custom-perfluorinated fluorosurfactants bearing azide-containing polar groups, which spontaneously react when forming the droplet with strain-alkyne-functionalized antibodies solubilized in the aqueous phase. In this article, we present our research on the influence of the structure of surfactant's hydrophilic heads on the efficiency of SPAAC functionalization and on the effect of this antibody grafting process on droplet stability. We have shown that while short linkers lead to high grafting efficiency, long linkers lead to high stability, and that an intermediate size is required to balance both parameters. In the described family of surfactants, the optimal structure proved to be a PEG4 linker connecting a polar di-azide head and a per-fluoropolyether tail (Krytox). We also found that grafting an increasing amount of antibody, thus increasing interface coverage, increases droplet stability. It thus appears that such a bi-partite system with a reactive fluoro-surfactant in the oil phase and reactive antibody counterpart in the aqueous phase gives access in situ to novel surfactant construct providing unexplored interface structures and droplet functionality.


Subject(s)
Microfluidics , Water , Water/chemistry , Azides/chemistry , Surface-Active Agents/chemistry , Antibodies
2.
Pharmaceutics ; 15(6)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37376091

ABSTRACT

Despite their clinical success, Antibody-Drug Conjugates (ADCs) are still limited to the delivery of a handful of cytotoxic small-molecule payloads. Adaptation of this successful format to the delivery of alternative types of cytotoxic payloads is of high interest in the search for novel anticancer treatments. Herein, we considered that the inherent toxicity of cationic nanoparticles (cNP), which limits their use as oligonucleotide delivery systems, could be turned into an opportunity to access a new family of toxic payloads. We complexed anti-HER2 antibody-oligonucleotide conjugates (AOC) with cytotoxic cationic polydiacetylenic micelles to obtain Antibody-Toxic-Nanoparticles Conjugates (ATNPs) and studied their physicochemical properties, as well as their bioactivity in both in vitro and in vivo HER2 models. After optimising their AOC/cNP ratio, the small (73 nm) HER2-targeting ATNPs were found to selectively kill antigen-positive SKBR-2 cells over antigen-negative MDA-MB-231 cells in serum-containing medium. Further in vivo anti-cancer activity was demonstrated in an SKBR-3 tumour xenograft model in BALB/c mice in which stable 60% tumour regression could be observed just after two injections of 45 pmol of ATNP. These results open interesting prospects in the use of such cationic nanoparticles as payloads for ADC-like strategies.

3.
Anal Chem ; 95(9): 4470-4478, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36821722

ABSTRACT

Enzyme-linked immunosorbent assay (ELISA) is a central analytic method in biological science for the detection of proteins. Introduction of droplet-based microfluidics allowed the development of miniaturized, less-consuming, and more sensitive ELISA assays by coencapsulating the biological sample and antibody-functionalized particles. We report herein an alternative in-droplet immunoassay format, which avoids the use of particles. It exploits the oil/aqueous-phase interface as a protein capture and detection surface. This is achieved using tailored perfluorinated surfactants bearing azide-functionalized PEG-based polar headgroups, which spontaneously react when meeting at the droplet formation site, with strained alkyne-functionalized antibodies solubilized in the water phase. The resulting antibody-functionalized inner surface can then be used to capture a target protein. This surface capture process leads to concomitant relocation at the surface of a labeled detection antibody and in turn to a drastic change in the shape of the fluorescence signal from a convex shape (not captured) to a characteristic concave shape (captured). This novel droplet surface immunoassay by fluorescence relocation (D-SIRe) proved to be fast and sensitive at 2.3 attomoles of analyte per droplet. It was further demonstrated to allow detection of cytosolic proteins at the single bacteria level.


Subject(s)
Antibodies , Proteins , Immunoassay/methods , Enzyme-Linked Immunosorbent Assay , Microfluidics/methods
4.
Org Biomol Chem ; 19(23): 5063-5067, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34027531

ABSTRACT

Strain-promoted azide-alkyne cycloaddition (SPAAC) is an important member of the bioorthogonal reaction family. Over the past decade, much work has been dedicated to the generation of new strained alkynes with improved reactivity. While kinetics studies of SPAAC are often conducted in organic solvents, buffered solutions or mixtures, these media do not reflect the complexity of in vivo systems. In this work, we show that performing SPAAC in human plasma leads to intriguing kinetics and selectivity effects. In particular, we observed that reactions in plasma could be accelerated up to 70-fold compared to those in methanol, and that selective couplings between a pair of reagents could be possible in competition experiments. These findings highlight the value of evaluating bioorthogonal reactions in such a complex medium, especially when in vivo applications are planned, as unsuspected behaviour can be observed, disrupting the usual rules governing the reactivity in simple solvent systems.

5.
Nat Prod Res ; 35(24): 5665-5673, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32985247

ABSTRACT

A new alkaloid, manniindole 1, together with four known compounds: aristolactam AII 2, aristolactam BII 3, piperolactam D 4 and polycarpol 5 were isolated from the crude extract EtOH-H2O (8:2) of the roots of Anonidium mannii by chromatographic separation. The structure elucidation was performed on the basis of a spectroscopic analysis (IR, HRESI MS, 1D and 2D NMR) as well as a comparison of their spectral data with those reported in the literature. For the first time, the crude extract and those isolated compounds were evaluated for their anti-schistosomal activity against Schistosoma mansoni and for cytotoxicity activity against Huh7 and A549 cells. Furthermore, they were also tested in vitro on the recent characterized Schistosoma mansoni NAD+ catabolizing enzyme (SmNACE) for their impact on this enzyme which is localized on the outer surface of the adult parasite. Compound 2 displayed quite good worm killing capability, while 4 showed significant inhibition of SmNACE.


Subject(s)
Annonaceae , Animals , Indoles/pharmacology , Plant Roots , Schistosoma mansoni
6.
Sci Rep ; 10(1): 7691, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32376903

ABSTRACT

Here we present the synthesis and evaluation of antibody-drug conjugates (ADCs), for which antibody and drug are non-covalently connected using complementary DNA linkers. These ADCs are composed of trastuzumab, an antibody targeting HER2 receptors overexpressed on breast cancer cells, and monomethyl auristatin E (MMAE) as a drug payload. In this new ADC format, trastuzumab conjugated to a 37-mer oligonucleotide (ON) was prepared and hybridized with its complementary ON modified at 5-end with MMAE (cON-MMAE) in order to obtain trastuzumab-DNA-MMAE. As an advantage, the cON-MMAE was completely soluble in water, which decreases overall hydrophobicity of toxic payload, an important characteristic of ADCs. The stability in the human plasma of these non-engineered ON-based linkers was investigated and showed a satisfactory half-life of 5.8 days for the trastuzumab-DNA format. Finally, we investigated the in vitro cytotoxicity profile of both the DNA-linked ADC and the ON-drug conjugates and compared them with classical covalently linked ADC. Interestingly, we found increased cytotoxicity for MMAE compared to cON-MMAE and an EC50 in the nanomolar range for trastuzumab-DNA-MMAE on HER2-positive cells. Although this proved to be less potent than classically linked ADC with picomolar range EC50, the difference in cytotoxicity between naked payload and conjugated payload was significant when an ON linker was used. We also observed an interesting increase in cytotoxicity of trastuzumab-DNA-MMAE on HER2-negative cells. This was attributed to enhanced non-specific interaction triggered by the DNA strand as it could be confirmed using ligand tracer assay.


Subject(s)
Antineoplastic Agents/chemistry , DNA , Immunoconjugates/chemistry , Oligopeptides/chemistry , Trastuzumab/chemistry , Cell Line, Tumor , Humans
7.
Chem Sci ; 11(5): 1210-1215, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-34123245

ABSTRACT

Controlled protein functionalization holds great promise for a wide variety of applications. However, despite intensive research, the stoichiometry of the functionalization reaction remains difficult to control due to the inherent stochasticity of the conjugation process. Classical approaches that exploit peculiar structural features of specific protein substrates, or introduce reactive handles via mutagenesis, are by essence limited in scope or require substantial protein reengineering. We herein present equimolar native chemical tagging (ENACT), which precisely controls the stoichiometry of inherently random conjugation reactions by combining iterative low-conversion chemical modification, process automation, and bioorthogonal trans-tagging. We discuss the broad applicability of this conjugation process to a variety of protein substrates and payloads.

8.
Org Biomol Chem ; 16(44): 8579-8584, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30375605

ABSTRACT

We designed a convergent synthesis pathway that provides access to trifunctional oligoethyleneglycol-amine (OEG-amine) linkers. By applying the reductive coupling of a primary azide to bifunctional OEG-azide precursors, the corresponding symmetrical dialkylamine bearing two homo-functional end chain groups and a central nitrogen was obtained. These building blocks bear minimal structural perturbation compared to the native OEG backbone which makes them attractive for biomedical applications. The NMR investigations of the mechanism process reveal the formation of nitrile and imine intermediates which can react with the reduced free amine form. Additionally, these trifunctional OEG-amine linkers were employed in a coupling reaction to afford branched multifunctional PEG dendrons which are molecularly defined. These discrete PEG-based dendrons (n = 16, 18 and 36) could be useful for numerous applications where multivalency is required.

9.
Org Biomol Chem ; 16(8): 1305-1311, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29388667

ABSTRACT

Here, we introduce 4-azidophenyl glyoxal (APG) as an efficient plug-and-play reagent for the selective functionalisation of arginine residues in native antibodies. The selective reaction between APG and arginines' guanidine groups allowed a facile introduction of azide groups on the monoclonal antibody trastuzumab (plug stage). These pre-functionalised antibody-azide conjugates were then derivatised during the "play stage" via a biorthogonal cycloaddition reaction with different strained alkynes. This afforded antibody-fluorophore and antibody-oligonucleotide conjugates, all showing preserved antigen selectivity and high stability in human plasma. Due to a lower content of arginines compared to lysines in native antibodies, this approach is thus attractive for the preparation of more homogeneous conjugates. This method proved to be orthogonal to classical lysine-based conjugation and allowed straightforward generation of dual-payload antibody.


Subject(s)
Antibodies, Monoclonal/chemistry , Arginine/chemistry , Azides/chemistry , Phenylglyoxal/analogs & derivatives , Alkynes/chemistry , Cycloaddition Reaction , Immunoconjugates/chemistry , Lysine/chemistry , Phenylglyoxal/chemistry , Trastuzumab/chemistry
10.
Nat Commun ; 8: 15242, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28524847

ABSTRACT

Drugs, usually long acting and metabolically stable molecules, might be the source of adverse effects triggered by complex drug interactions, anaphylaxis and drug-induced coagulopathy. To circumvent this growing drug safety issue, we herein investigate the opportunity offered by bio-orthogonal chemistry for in vivo drug neutralization. We design a small-molecule anticoagulant drug (Warfarin) containing an azide group that acts as a safety pin. It allows drug deactivation and restoration of physiological coagulation via in vivo click reaction with a suitable cyclooctyne-based neutralizing agent. In this strategy, the new molecule formed by reaction of the drug and the antidote is deprived of biological activity and prone to fast renal clearance. This 'Click &Clear' approach lays ground for new strategies in designing drugs with switchable biophysical properties.


Subject(s)
Anticoagulants/administration & dosage , Anticoagulants/pharmacology , Azides/administration & dosage , Azides/pharmacology , Warfarin/analogs & derivatives , Animals , Anticoagulants/chemical synthesis , Anticoagulants/chemistry , Azides/chemical synthesis , Azides/chemistry , Chromatography, Liquid , Click Chemistry , Kidney/drug effects , Kidney/metabolism , Male , Mice, Inbred C57BL , Tandem Mass Spectrometry , Warfarin/administration & dosage , Warfarin/chemical synthesis , Warfarin/chemistry , Warfarin/pharmacology
11.
Bioconjug Chem ; 28(5): 1452-1457, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28443656

ABSTRACT

We report a plug-and-play strategy for the preparation of functionally enhanced antibodies with a defined average degree of conjugation (DoC). The first stage (plug) allows the controllable and efficient installation of azide groups on lysine residues of a native antibody using 4-azidobenzoyl fluoride. The second step (play) allows for versatile antibody functionalization with a single payload or combination of payloads, such as a toxin, a fluorophore, or an oligonucleotide, via copper-free strain-promoted azide-alkyne cycloaddition (SPAAC). It is notable that in comparison to a classical N-hydroxysuccinimide ester (NHS) strategy, benzoyl fluorides show faster and more efficient acylation of lysine residues in a PBS buffer. This translates into better control of the DoC and enables the efficient and fast functionalization of delicate biomolecules at low temperature.


Subject(s)
Antibodies, Monoclonal/chemistry , Benzyl Compounds/chemistry , Fluorides/chemistry , Immunoconjugates/chemistry , Lysine/chemistry , Receptor, ErbB-2/immunology , Acylation , Alkynes/chemistry , Antibodies, Monoclonal/immunology , Azides/chemistry , Click Chemistry , Cycloaddition Reaction , Fluorescent Dyes/chemistry , Humans , Immunoconjugates/immunology , Molecular Structure , Oligonucleotides/chemistry , Succinimides/chemistry , Toxins, Biological/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...