Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitology ; 149(12): 1590-1606, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35968696

ABSTRACT

The best way to study digenean diversity combines molecular genetic methods, life-cycle studies and elaborate morphological descriptions. This approach has been barely used for one of the most widespread digenean taxa parasitizing fish ­ the superfamily Hemiuroidea. Here, we applied the integrative approach to the hemiuroideans from the family Derogenidae parasitizing fish at the White and Barents Seas. Analysis of 28S, 18S, 5.8S rDNA, ITS2 and cox1 gene sequences from sexually adult worms (maritae) showed genetic heterogeneity for 2 derogenid species known from this area: Derogenes varicus and Progonus muelleri. Thus, 2 pairs of genetic lineages were found: DV1 and DV2, PM1 and PM2, respectively. Data from other regions indicate that 2 more lineages of D. varicus probably exist. Based on previous records from the White and Barents Seas, we hypothesized that the cercariae found in the moonsnails (family Naticidae) belong to the Derogenidae and may help to differentiate these lineages as species. According to our results, Cercaria appendiculata from Cryptonatica affinis matched DV1, similar nameless cercariae from Euspira pallida and Amauropsis islandica matched DV2, and Cercaria octocauda from C. affinis matched PM1. We provide new data on the structure of these cercariae and discuss the life-cycle pattern of the studied digeneans.


Subject(s)
Gastropoda , Trematoda , Animals , Trematoda/genetics , Cercaria/genetics , Life Cycle Stages , DNA, Ribosomal , Fishes , Phylogeny
2.
Int J Parasitol Parasites Wildl ; 15: 158-172, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34040963

ABSTRACT

Truncated life cycles may emerge in digeneans if the second intermediate host is eliminated, and the first intermediate host, the mollusc, takes up its role. To understand the causes of this type of life cycle truncation, we analyzed closely related species of the genus Neophasis (Acanthocolpidae) with three-host and two-host life cycles. The life cycle of Neophasis anarrhichae involves two hosts: wolffishes of the genus Anarhichas as the definitive host and the common whelk Buccinum undatum as the intermediate host. Neophasis oculata, a closely related species with a three-host life cycle, would be a suitable candidate for the comparison, but some previous data on its life cycle seem to be erroneous. In this study, we aimed to redescribe the life cycle of N. oculata and to verify the life cycle of N. anarrhichae using molecular and morphological methods. Putative life cycle stages of these two species from intermediate hosts were linked with adult worms from definitive hosts using ribosomal molecular data: 18S, ITS1, 5.8S-ITS2, 28S. These markers did not differ within the species and were only slightly different between them. Intra- and interspecific variability was also estimated using mitochondrial COI gene. In the constructed phylogeny Neophasis spp. formed a common clade with two other genera of the Acanthocolpidae, Tormopsolus and Pleorchis. We demonstrated that the first intermediate hosts of N. oculata were gastropods Neptunea despecta and B. undatum (Buccinoidea). Shorthorn sculpins Myoxocephalus scorpius were shown to act as the second intermediate and definitive hosts of N. oculata. The previous reconstruction of the two-host life cycle of N. anarrhichae was reaffirmed. We suggest that life cycle truncation in N. anarrhichae was initiated by an acquisition of continuous morphogenesis in the hermaphroditic generation and supported by a strong prey-predator relationship between A. lupus and B. undatum.

SELECTION OF CITATIONS
SEARCH DETAIL
...