Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Chem ; 11: 1263440, 2023.
Article in English | MEDLINE | ID: mdl-37854975

ABSTRACT

A bis(aza-18-crown-6)-containing 2,5-di(benzylidene)cyclopentanone and a bis(ammoniopropyl) derivative of 1,2-di(4-pyridyl)ethylene in MeCN were found to form a supramolecular charge-transfer complex, which can act as an "off-on" fluorescent sensor for the Ca2+ and 1,12-dodecanediammonium ions. The molecular structure of this complex in solution was studied by density functional theory calculations.

2.
ACS Omega ; 7(46): 42370-42376, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36440159

ABSTRACT

The formation and the spectroscopic and structural properties of 1:1 and 2:1 (ligand-to-dication) complexes of an (18-crown-6)stilbene with ethane-1,2-diammonium diperchlorate in MeCN were studied by UV-vis and NMR spectroscopy and by density functional theory calculations. Prolonged UV irradiation of 2:1 mixtures of the crown stilbene and the diammonium salt led to the formation of two main photoproducts, namely, the single syn-"head-to-head" photodimer of the crown stilbene (rctt cyclobutane) due to supramolecular-assisted [2 + 2] photocycloaddition and a crown ether derivative of phenanthrene due to a photoinduced electrocyclization reaction. The rctt cyclobutane was isolated by preparative photolysis, followed by chromatography. The selectivity of the [2 + 2] photocycloaddition is explained by supramolecular pre-organization of crown stilbene molecules into the 2:1 complexes that have a pseudo-sandwich structure with stacking interactions between the stilbene moieties.

3.
J Org Chem ; 86(4): 3164-3175, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33528258

ABSTRACT

A new efficient method was proposed for the synthesis of (18-crown-6)stilbene; the structure of the product was confirmed by X-ray diffraction analysis. In MeCN, this compound forms pseudodimeric complexes with N-(2-ammonioethyl)-4-styrylpyridinium and N-(3-ammoniopropyl)-4-styrylpyridinium diperchlorates via hydrogen bonding between the ammonium group and the crown ether oxygen atoms. The ammonioethyl derivative was synthesized for the first time. The stability constants and spectral characteristics of the complexes were measured by spectrophotometric and fluorescence titration. Photoirradiation of the pseudodimeric complex of (18-crown-6)stilbene with the ammoniopropyl dye resulted in the stereospecific [2 + 2] cross-photocycloaddition reaction. The replacement of the stilbene moiety in the crown compound by a styrylpyridine moiety led to a 5-fold increase in the quantum yield of the photoprocess. The most probable cause for this effect is the presence of photoinduced electron transfer in (18-crown-6)stilbene complexes. This assumption is confirmed by fluorescence lifetime spectroscopy and density functional theory calculations.

4.
ACS Omega ; 5(40): 25993-26004, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33073126

ABSTRACT

The physicochemical properties of highly stable supramolecular donor-acceptor (D-A) complexes of a bis(18-crown-6)azobenzene (weak π-donor) with a series of bis(ammonioalkyl) derivatives of viologen-like molecules (π-acceptors) in acetonitrile were studied using cyclic voltammetry, UV-vis absorption spectroscopy, 1H NMR spectroscopy, and density functional theory (DFT) calculations. The crystalline structures of the bis(crown)azobenzene and its complex with a bis(ammoniopropyl) derivative of 2,7-diazapyrene were determined by X-ray diffraction analysis. In solution, all of the supramolecular D-A complexes studied have a pseudocyclic structure owing to ditopic coordination of the ammonium groups of the acceptor to the crown ether moieties of the donor. These complexes show somewhat lower stability as compared with the previously studied complexes of the related derivative of stilbene (strong π-donor), which is explained by the relatively weak intermolecular charge-transfer (CT) interactions. Time-dependent DFT calculations predict that the low-energy CT transition in the D-A complex of the bis(crown)azobenzene with a bis(ammoniopropyl) derivative of 4,4'-bipyridine lies between the local ππ* and nπ* transitions of the azobenzene. The absorption band associated with the CT transition is indiscernible in the spectrum since it is overlapped with broad and more intense ππ* and nπ* bands. It was found that the E → Z photoisomerization quantum yield of the bis(crown)azobenzene decreases by almost an order of magnitude upon the complexation with the 4,4'-bipyridine derivative. This effect was tentatively attributed to the intermolecular electron transfer that occurs in the 1ππ* excited state of the azobenzene and competes with the 1ππ* → 1 nπ* internal conversion.

5.
Magn Reson Chem ; 55(2): 99-105, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27477821

ABSTRACT

13 C and 15 N NMR spectra of high-energy 2,4,6-triazidopyridine-3,5-dicarbonitrile, 2,3,5,6-tetraazidopyridine-4-carbonitrile and 3,4,5,6-tetraazidopyridine-2-carbonitrile are reported. The assignment of signals in the spectra was performed on the basis of density functional theory calculations. The molecular geometries were optimized using the M06-2X functional with the 6-311+G(d,p) basis set. The magnetic shielding tensors were calculated by the gauge-independent atomic orbital method with the Tao-Perdew-Staroverov-Scuseria hybrid functional known as TPSSh. In all the calculations, a polarizable continuum model was used to simulate solvent effects. This approach provided accurate predictions of the 13 C and 15 N chemical shifts for all the three compounds despite complications arising due to non-coplanar arrangement of the azido groups in the molecules. It was found that the 15 N chemical shifts of the Nα atoms in the azido groups of 2,4,6-triazidopyridines correlate with the 13 C chemical shifts of the carbon atoms attached to these azido groups. Copyright © 2016 John Wiley & Sons, Ltd.

6.
J Phys Chem A ; 119(52): 13025-37, 2015 Dec 31.
Article in English | MEDLINE | ID: mdl-26650887

ABSTRACT

Molecular self-assembly is an effective strategy for controlling the [2 + 2] photocycloaddition reaction of olefins. The geometrical properties of supramolecular assemblies are proven to have a critical effect on the efficiency and selectivity of this photoreaction both in the solid state and in solution, but the role of other factors remains poorly understood. Convenient supramolecular systems to study the structure-property relationships are pseudocyclic dimers spontaneously formed by styryl dyes containing a crown ether moiety and a remote ammonium group. New dyes of this type were synthesized to investigate the effects of structural and electronic factors on the quantitative characteristics of supramolecular dimerization and [2 + 2] photocycloaddition in solution. Variable structural parameters for the styryl dyes were the size and structure of macrocyclic moiety, the nature of heteroaromatic residue, and the length of the ammonioalkyl group attached to this residue. Quantum chemical calculations of the pseudocyclic dimers were performed in order to interpret the relationships between the structure of the ammonium dyes and the efficiency of the supramolecular photoreaction. One of the dimeric complexes was obtained in the crystalline state and studied by X-ray diffraction. The results obtained demonstrate that the photocycloaddition in the pseudocyclic dimers can be dramatically affected by the electronic structure of the styryl moieties, as dependent on the electron-donating ability of the substituents on the benzene ring, and by the conformational flexibility of the pseudocycle, which determines the mobility of the olefinic bonds. The significance of electronic factors is highlighted by the fact that the photocycloaddition quantum yield in geometrically similar dimeric structures varies from ≤10(-4) to 0.38. The latter value is unusually high for olefins in solution.


Subject(s)
Ammonium Compounds/chemistry , Coloring Agents/chemistry , Crown Ethers/chemistry , Cycloaddition Reaction , Photochemical Processes , Styrenes/chemistry , Coloring Agents/chemical synthesis , Cyclization , Dimerization , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Molecular Structure , Structure-Activity Relationship
7.
J Org Chem ; 79(13): 6047-53, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24905080

ABSTRACT

The key intermediates of decomposition of high-energy 2,4,6-triazidopyrimidine and its 5-chloro-substituted derivative, the detonation of which is used for preparation of carbon nitrides, were investigated using electron paramagnetic resonance (EPR) spectroscopy in combination with quantum chemical calculations. The decomposition of the triazides was carried out photochemically, using the matrix isolation technique. The photodecomposition of both triazides with 254 nm light in argon matrices at 5 K occurred selectively to subsequently give the corresponding triplet 4,6-diazido-2-nitrenopyrimidines, quintet 4-azido-2,6-dinitrenopyrimidines, and septet 2,4,6-trinitrenopyrimidines. The latter were photochemically unstable and decomposed to form triplet nitrenes NCN and NNC as well as triplet carbenes NCCCN, HCCN, and HCCCCN. The results obtained provide important information about exchange interactions in high-spin nitrenes with the pyrimidine ring and the mechanism of the formation of carbon nitrides during thermolysis of 2,4,6-triazidopyrimidine.

8.
J Org Chem ; 78(19): 9834-47, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24001286

ABSTRACT

Novel 2-benzothiazole-, 4-pyridine-, and 2- and 4-quinoline-based styryl dyes containing an N-methylbenzoaza-15(18)-crown-5(6)-ether moiety were synthesized. A detailed electronic spectroscopy study revealed high performance of these compounds as optical molecular sensors for alkali and alkaline-earth metal cations. They were shown to considerably surpass analogous chromoionophores based on N-phenylaza-crown ethers regarding both the ionochromism and the cation-binding ability. In addition, they act as fluorescent sensors for the metal cations by demonstrating cation-triggered emission. Upon complexation with Ba(2+), the fluorescence enhancement factor reaches 61. The structural features of dyes and their metal complexes were studied by NMR spectroscopy and X-ray diffraction. The high degree of macrocycle preorganization was found to be one of the factors determining the high cation-binding ability of the sensor molecules based on N-methylbenzoaza-crown ethers.


Subject(s)
Cations/chemistry , Coloring Agents/chemistry , Crown Ethers/chemistry , Styrenes/chemistry , Coordination Complexes , Ionophores/chemistry , Magnetic Resonance Spectroscopy , X-Ray Diffraction
9.
Magn Reson Chem ; 51(9): 562-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23877844

ABSTRACT

2,4,6-Triazido-s-triazine, 2,4,6-triazidopyrimidine and six different 2,4,6-triazidopyridines were studied by (15)N NMR spectroscopy. The assignment of signals in the spectra was performed using the gauge-independent atomic orbital (GIAO)-Tao-Perdew-Staroverov-Scuseria exchange-correlation functional (TPSS)h/6-311+G(d,p) calculations on the M06-2X/6-311+G(d,p) optimized molecular geometries. The Truhlar and coworkers' continuum solvation model called SMD was applied to treat solvent effects. With this approach, the root mean square error in estimations of the (15)N chemical shifts for the azido groups was just 1.9 ppm. It was shown that the different reactivity of the α- and γ-azido groups in pyridines correlates well with the chemical shifts of the Nα signals of these groups. Of two nonequivalent azido groups of azines, the azido group with the most shielded Nα signal is the most electron-deficient and reactive toward electron-rich reagents. By contrast, the azido group of azines with the most deshielded Nα signal is the most reactive toward electron-poor reagents.


Subject(s)
Azides/chemistry , Pyrimidines/chemistry , Triazines/chemistry , Magnetic Resonance Spectroscopy/standards , Molecular Structure , Nitrogen Isotopes , Reference Standards
10.
J Org Chem ; 76(16): 6768-79, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21744795

ABSTRACT

4,4'-Bipyridine and 2,7-diazapyrene derivatives (A) having two ammonioalkyl N-substituents were synthesized. The complex formation of these compounds with bis(18-crown-6)stilbene (D) was studied by spectrophotometry, cyclic voltammetry, (1)H NMR spectroscopy, and X-ray diffraction analysis. In MeCN, π-donor D and π-acceptors A form supramolecular 1:1 (D·A) and 2:1 (D·A·D) charge-transfer complexes. The D·A complexes have a pseudocyclic structure as a result of ditopic binding of the ammonium groups to the crown-ether fragments. The better the geometric matching between the components, the higher the stability of the D·A complexes (log K up to 9.39). A key driving force of the D·A·D complex formation is the excessive steric strain in the precursor D·A complexes. The pseudocyclic D·A complexes involving the ammoniopropyl derivative of 4,4'-bipyridine were obtained as single crystals. Crystallization of the related ammonioethyl derivative was accompanied by transition of the D·A complexes to a structure of the (D·A)(m) coordination polymer type.


Subject(s)
Copper/chemistry , Crown Ethers/chemical synthesis , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Polymers/chemistry , Pyrenes/chemistry , Pyridines/chemistry , Pyridines/chemical synthesis , Stilbenes/chemical synthesis , Crown Ethers/chemistry , Crystallization , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Structure , Stilbenes/chemistry
11.
Photochem Photobiol Sci ; 10(1): 15-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20976366

ABSTRACT

Self-assembled pseudocyclic structures consisting of two molecules of a crown-containing butadienyl dye and two Mg(2+) ions readily undergo regio- and stereospecific [2+2] photocycloaddition in MeCN to produce a single cyclobutane stereoisomer in almost quantitative yield.

12.
J Org Chem ; 68(16): 6115-25, 2003 Aug 08.
Article in English | MEDLINE | ID: mdl-12895039

ABSTRACT

Styryl dyes 4a-e containing a 15-crown-5 ether unit and a quinoline residue with a sulfonatoalkyl or sulfonatobenzyl N-substituent were synthesized. The relationship between the photochemical behavior of these dyes and their aggregates derived from complexation with Mg(2+) in MeCN was studied using (1)H NMR and absorption spectroscopy. The E-isomers of 4a-e were shown to form highly stable dimeric (2:2) complexes with Mg(2+). Upon irradiation with visible light, the dimeric complexes undergo two competing photoreactions, viz., geometric E --> Z isomerization, resulting in an anion-capped 1:1 complex of the Z-isomer with Mg(2+) and stereospecific syn-head-to-tail [2+2]-cycloaddition, affording a single isomer of bis-crown-containing cyclobutane. The N-substituent in the dye has a dramatic effect on the photochemical behavior of the dimeric complex. Molecular dynamics and semiempirical quantum-chemical calculations were carried out to interpret the observed photocycloaddition in the dimer. Conformational equilibria for the dimer of (E)-4b were analyzed using (1)H NMR spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...