Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36559733

ABSTRACT

We present an in-depth analysis of Raman spectra of novel block copolymers of methyl ethylene phosphate (MeOEP) with caprolactone (CL) and L-lactide (LA), recorded with the excitation wavelengths of 532 and 785 nm. The experimental peak positions, relative intensities and profiles of the poly(methyl ethylene phosphate) (PMeOEP), polycaprolactone (PCL) and poly(L-lactide) (PLA) bands in the spectra of the copolymers and in the spectra of the PMeOEP, PCL and PLA homopolymers turn out to be very similar. This clearly indicates the similarity between the conformational and phase compositions of PMeOEP, PCL and PLA parts in molecules of the copolymers and in the PMeOEP, PCL and PLA homopolymers. Experimental ratios of the peak intensities of PMeOEP bands at 737 and 2963 cm-1 and the PCL bands at 1109, 1724 and 2918 cm-1 can be used for the estimation of the PCL-b-PMeOEP copolymers chemical composition. Even though only one sample of the PMeOEP-b-PLA copolymers was experimentally studied in this work, we assume that the ratios of the peak intensities of PLA bands at 402, 874 and 1768 cm-1 and the PMeOEP band at 737 cm-1 can be used to characterize the copolymer chemical composition.

2.
Biochemistry (Mosc) ; 87(10): 1084-1097, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36273877

ABSTRACT

This work is devoted to theoretical study of functioning of the cytochrome (Cyt) b6f complex (plastoquinol:plastocyanin oxidoreductase) of the electron transport chain (ETC) in oxygenic photosynthesis. A composition of the chloroplast ETC and molecular mechanisms of functioning of the Cyt b6f complex, which stands between photosystems II and I (PSII and PSI), are briefly reviewed. The Cyt b6f complex oxidizes plastoquinol (PQH2) molecules formed in PSII, and reduces plastocyanin, which serves as an electron donor to PSI. PQH2 oxidation is the rate-limiting step in the chain of electron transfer processes between PSII and PSI. Using the density functional theory (DFT) method, we have analyzed the two-electron (bifurcated) oxidation of PQH2 in the catalytic center Qo of the Cyt b6f complex. Results of DFT calculations are consistent with the fact that the first step of PQH2 oxidation, electron transfer to the Fe2S2 cluster of the iron-sulfur protein (ISP), is an endergonic (energy-accepting) process (ΔE ≈ 15 kJ·mol-1) that can limit turnover of the Cyt b6f complex. The second stage of bifurcated oxidation of PQH2 - electron transfer from semiquinone (PQH•, formed after the first step of PQH2 oxidation) to heme b6L - is the exergonic (energy-donating) process (ΔE < 0). DFT modeling of this stage revealed that semiquinone oxidation should accelerate after the PQH• radical shift towards the heme b6L (an electron acceptor) and the carboxy group of Glu78 (a proton acceptor). The data obtained are discussed within the framework of the Mitchell Q-cycle model describing PQH2 oxidation at the Qo site of the Cyt b6f complex.


Subject(s)
Iron-Sulfur Proteins , Plastocyanin , Electron Transport , Plastocyanin/metabolism , Protons , Cytochromes b/metabolism , Cytochrome b6f Complex/metabolism , Chloroplasts/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Iron-Sulfur Proteins/metabolism , Oxidoreductases/metabolism , Heme/metabolism
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 282: 121653, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-35926286

ABSTRACT

Mathematically describing the length-dependence of vibrational fingerprints of polyenes is challenging, yet crucial in understanding and predicting polyene-associated molecular properties of industrially-important and vital substances. To this end, we develop an analytical relationship between the wavenumbers ν∼C=C of the Raman-active CC stretching mode in polyene sequences (CHCH)n and the polyene length (n) using classical mechanics laws. Noteworthy, this relationship is derived from Newton's equations instead of regression approximations and validated against experimental data for degraded polyvinyl chloride (PVC), t-butyl end-capped all-trans polyenes, ß-carotenes, and carotenoids. Furthermore, given this fundamental tool, we carefully re-examined or validated the up-to-now applied empirical tools; we find that: (i) A phenomenological exponential regression function ν~C=C=1461+151.2×exp-0.07808n proves fairly suitable for describing polyenes with lengths below 24 in degraded PVC. (ii) The derived analytical relationship agrees more closely with a long-established reciprocal-length regression function ν~C=C=1459+720/n+1 for describing carotenoids. Moreover, extensive DFT calculation results on all-trans polyenes H(CHCH)nH (n = 3-30) and polyenes end-capped with terminal vinyl chloride oligomers agree with experiment for shorter polyenes and are similar, showing that complicated calculations of ν∼C=C for infinite degraded PVC chains reduce to the calculations on finite polyene sequences. Noteworthy, unlike other polyene length-determination tools, the proposed analytical polyene length-determination based on intrinsic physical properties could well prove to be an even more versatile tool, as it comes with the added potential for determining or correcting the elasticity constants of carbon bonds in polyene chains.


Subject(s)
Polyenes , Polyvinyl Chloride , Carotenoids/chemistry , Polyenes/chemistry , Vibration
4.
Polymers (Basel) ; 12(9)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967332

ABSTRACT

The expansion of the range of physico-chemical methods in the study of industrially significant α-olefin oligomers and polymers is of particular interest. In our article, we present a comparative Raman study of structurally uniform hydrogenated dimers, trimers, tetramers, and pentamers of 1-hexene and 1-octene, that are attractive as bases for freeze-resistant engine oils and lubricants. We found out that the joint monitoring of the disorder longitudinal acoustic mode (D-LAM) and symmetric C-C stretching modes allows the quantitative characterization of the number and length of alkyl chains (i.e., two structural characteristics), upon which the pour point and viscosity of the hydrocarbons depend, and to distinguish these compounds from both each other and linear alkanes. We demonstrated that the ratio of the contents of CH2 and CH3 groups in these hydrocarbons can be determined by using the intensities of the bands in the spectra, related to the asymmetric stretching vibrations of these groups. The density functional theory (DFT) calculations were applied to reveal the relations between the wavenumber and bandshape of the symmetric C-C stretching mode and a conformation arrangement of the 1-hexene and 1-octene dimers. We found that the branched double-chain conformation results in the splitting of the C-C mode into two components with the wavenumbers, which can be used as a measure of the length of branches. This conformation is preferable to the extended-chain conformation for hydrogenated 1-hexene and 1-octene dimers.

5.
Magn Reson Chem ; 48(5): 337-49, 2010 May.
Article in English | MEDLINE | ID: mdl-20225189

ABSTRACT

An explicit DFT modeling of water surroundings on the electron paramagnetic resonance properties of 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (TA) has been performed. A stepwise hydration of TA is accompanied with certain changes in geometrical parameters (bond lengths and angles) and redistribution of partial electric charges in TA. An aqueous cluster of 45 water molecules can be considered as an appropriate model for a complete aqueous shell around TA, although most of the structural and electronic characteristics of TA already converge at about 10 water molecules. Water surroundings induce an increase in electron spin density on the nitrogen atom of the nitroxide fragment due to stabilization of the polar resonance structure > N(+*)-O(-) at the expense of less polar structure > N-O*. The water-induced rise of the isotropic splitting constant a(iso), calculated from the contact term of the hyperfine interaction, comprises Deltaa(iso)(rho(N2)) = 2.2-2.5 G, which is typical of experimental value for TA. There are two contributions to the solvent effect on the a(iso)(rho(N2)) value: the redistribution of spin density in the nitroxide fragment (polarity effect) and water-induced distortions of TA geometry. Microscopic variations in a hydrogen-bonded water network cause noticeable fluctuations of the splitting constant a(iso)(rho(N2)). Calculations of the atomic spin density (sigma(N2)) allowed us to compute the splitting constant from the relationship a(iso)(sigma(N2)) = Qsigma(N2), where Q = 36.2 G. A practical advantage of using this relationship is that it gives 'smoothed' values of the splitting constant, which are sensitive to the environment polarity but remain tolerant to microscopic fluctuations of the hydrogen-bonded water network around a spin-label molecule.


Subject(s)
Cyclic N-Oxides/chemistry , Models, Molecular , Nitrogen Oxides/chemistry , Solvents/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...