Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(21): 37407-37415, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258329

ABSTRACT

Dynamic characteristics of femtosecond laser-generated shockwaves are investigated in ambient air. The experiments are performed using a 360-fs pulsed laser at a wavelength of 1.03 µm, with laser intensities up to 5 × 1014 W/cm2 (corresponding to about five times the air breakdown intensity threshold). Plasma and shockwave generation and propagation are visualized using a time-resolved transmission microscope. The maximum propagation velocity is in the order of Mach 30. By implementing a simple theoretical model, we find an initial pressure loading in the GPa range and shockwave pressure dropping down to MPa following propagation over few micrometers away from focus.

2.
Opt Express ; 30(21): 39101-39110, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258458

ABSTRACT

Laser writing inside semiconductors attracts attention as a possible route for three-dimensional integration in advanced micro technologies. In this context, gallium arsenide (GaAs) is a material for which the best conditions for laser internal modification (LIM) have not been established yet. We address this question by using laser pulses at a fixed wavelength of 1550-nm. A large parameter space is investigated including the response to the applied pulse energy, pulse duration (from femtosecond to nanosecond) and the focusing conditions. We report that well-defined and reproducible internal modifications are achievable with tightly focused nanosecond pulses. The measured writing thresholds are systematically compared to those obtained in silicon (Si), a more extensively studied material. In comparison to Si, we also observe that GaAs is more prone to filamentation effects affecting the modification responses. The reported specific observations for LIM of GaAs should facilitate the future process developments for applications in electronics or photonics.

3.
Opt Express ; 28(18): 26623-26635, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32906932

ABSTRACT

The advent of ultrafast infrared lasers provides a unique opportunity for direct fabrication of three-dimensional silicon microdevices. However, strong nonlinearities prevent access to modification regimes in narrow gap materials with the shortest laser pulses. In contrary to surface experiments for which one can always define an energy threshold to initiate modifications, we establish that some other threshold conditions inevitably apply on the pulse duration and the numerical aperture for focusing. In an experiment where we can vary continuously the pulse duration from 4 to 21 ps, we show that a minimum duration of 5.4 ps and a focusing numerical aperture of 0.85 are required to successfully initiate modifications. Below and above thresholds, we investigate the pulse duration dependence of the conditions applied in matter. Despite a modest pulse duration dependence of the energy threshold in the tested range, we found that all pulse durations are not equally performing to achieve highly reproducible modifications. Taken together with previous reports in the femtosecond and nanosecond regimes, this provides important guidelines on the appropriate conditions for internal structuring of silicon.

4.
Appl Opt ; 56(26): 7427-7434, 2017 Sep 10.
Article in English | MEDLINE | ID: mdl-29048065

ABSTRACT

We report on investigations of the spatial variations of contamination, roughness, and index of refraction of classically manufactured polished fused silica surfaces. Therefore, laser-induced breakdown spectroscopy was used to probe surface and subsurface impurities via the detection of aluminum. Measurements at different positions on the surface of the cylindrical fused silica windows evidenced an almost contamination-free center region, whereas a relatively large contamination area was found close to the edge. In-depth measurements verify the presence of aluminum atoms in the bulk until a depth of several tens of microns for the edge region. In addition, atomic force microscopic measurements show that the surface roughness is larger in the center region compared to the edge. Further, the index of refraction increases from the center region towards the edge as measured via ellipsometry. The results indicate a nonuniform impact of the grinding, lapping, and polishing tools on the surface. The findings turn out to be of specific interest for different applications, particularly for the realization of large-scale high-performance coatings.

5.
Sci Rep ; 7(1): 1249, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28455507

ABSTRACT

We measure the laser-induced damage threshold (LIDT) fluence under single shot at the surface of Sapphire samples prepared following the standards of two methods yielding to different surface finish and used in optical and laser industry. We use AFM microscopy to measure the roughness parameter Ra and power spectral density (PSD) of the sample surface. We show that the quality of surface topography resulting from surface preparation affects the damage threshold of Sapphire crystals exposed to femtosecond, picosecond, and nanosecond laser conditions at visible and near-infrared wavelengths. We observe a higher resistance to laser damage or macroscopic modification when the surface finish presents a smooth and regular topography. We indeed measure a 1.4 to 2 times increase of the LIDT fluence in femtosecond and picosecond regimes and up to 5 times with nanosecond pulses. Using simple damage model and PSD data, we correlate the LIDT reduction of Sapphire samples of lower quality of surface finish with the high-frequency tail component of their PSD distribution corresponding to striations of the width of a fraction of the laser wavelength. This study emphasizes the importance of detailed assessment of surface topography for laser damage evaluation and understanding and for indicating directions of improvement.

SELECTION OF CITATIONS
SEARCH DETAIL
...