Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Thorac Cancer ; 14(29): 2909-2923, 2023 10.
Article in English | MEDLINE | ID: mdl-37614219

ABSTRACT

BACKGROUND: Risk factors for predicting pneumonitis during durvalumab consolidation after chemoradiotherapy (CRT) in locally advanced non-small cell lung cancer (LA-NSCLC) are still lacking. Extracellular vesicles (EVs) play a crucial role in intercellular communication and are potential diagnostic tools for various diseases. METHODS: We retrospectively collected predurvalumab treatment serum samples from patients treated with durvalumab for LA-NSCLC, isolated EVs using anti-CD9 and anti-CD63 antibodies, and performed proteomic analyses. We examined EV proteins that could predict the development of symptomatic pneumonitis (SP) during durvalumab treatment. Potential EV-protein biomarkers were validated in an independent cohort. RESULTS: In the discovery cohort, 73 patients were included, 49 with asymptomatic pneumonitis (AP) and 24 with SP. Of the 5797 proteins detected in circulating EVs, 33 were significantly elevated (fold change [FC] > 1.5, p < 0.05) in the SP group, indicating enrichment of the nuclear factor kappa B (NF-κB) pathway. Patients with high levels of EV-RELA, an NF-κB subunit, had a higher incidence of SP than those with low levels of EV-RELA (53.8% vs. 13.4%, p = 0.0017). In the receiver operating characteristic analysis, EV-RELA demonstrated a higher area under the curve (AUC) than lung V20 (0.76 vs. 0.62) and was identified as an independent risk factor in the multivariate logistic regression analysis (p = 0.008, odds ratio 7.72). Moreover, high EV-RELA was also a predictor of SP in the validation cohort comprising 43 patients (AUC of 0.80). CONCLUSIONS: Circulating EV-RELA may be a predictive marker for symptomatic pneumonitis in patients with LA-NSCLC treated with durvalumab.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pneumonia , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , Consolidation Chemotherapy , Retrospective Studies , NF-kappa B , Proteomics , Pneumonia/chemically induced , Chemoradiotherapy/adverse effects
2.
Am J Respir Cell Mol Biol ; 69(1): 34-44, 2023 07.
Article in English | MEDLINE | ID: mdl-36848313

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive aging-related lung disease associated with increased lung cancer risk. Although previous studies have shown that IPF worsens the survival of patients with lung cancer, whether IPF independently affects cancer malignancy and prognosis remains inconclusive. Extracellular vesicles (EVs) have recently emerged as active carriers of molecular biomarkers and mediators of intercellular communication in lung homeostasis and pathogenesis. EV cargo-mediated fibroblast-tumor cell communication might participate in the development and progression of lung cancer by modulating various signaling pathways. In this study, we examined the impact of lung fibroblast (LF)-derived EVs on non-small cell lung cancer (NSCLC) malignancy in the IPF microenvironment. Here, we showed that LFs derived from patients with IPF have phenotypes of myofibroblast differentiation and cellular senescence. Furthermore, we found that IPF LF-derived EVs have markedly altered microRNA compositions and exert proproliferative functions on NSCLC cells. Mechanistically, the phenotype was attributed mainly to the enrichment of miR-19a in IPF LF-derived EVs. As a downstream signaling pathway, mir-19a in IPF LF-derived EVs regulates ZMYND11-mediated c-Myc activation in NSCLC, potentially contributing to the poor prognosis of patients with NSCLC with IPF. Our discoveries provide novel mechanistic insights for understanding lung cancer progression in the IPF microenvironment. Accordingly, blocking the secretion of IPF LF-derived EV miR-19a and their signaling pathways is a potential therapeutic strategy for managing IPF and lung cancer progression.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Extracellular Vesicles , Idiopathic Pulmonary Fibrosis , Lung Neoplasms , MicroRNAs , Humans , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Lung/pathology , Idiopathic Pulmonary Fibrosis/pathology , Extracellular Vesicles/metabolism , Fibroblasts/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Tumor Microenvironment , DNA-Binding Proteins , Cell Cycle Proteins/metabolism , Co-Repressor Proteins/metabolism
3.
World J Clin Oncol ; 13(7): 641-651, 2022 Jul 24.
Article in English | MEDLINE | ID: mdl-36157155

ABSTRACT

BACKGROUND: Low neutrophil-to-lymphocyte ratio (NLR) has been shown to be associated with a favorable therapeutic response to nivolumab. The activation of immunocompetent cells such as lymphocytes exhibits an antitumor effect; however, the development of excessive immune responses in autologous organs along with the breakdown of self-tolerance causes immune-related adverse events, including hypothyroidism. Therefore, the possibility that NLR is associated with immune response shows that NLR can be not only a predictive factor for good response to nivolumab but also a predictive factor for the development of hypothyroidism. AIM: To evaluate whether continuous NLR monitoring during nivolumab treatment is useful for predicting the incidence and onset period of hypothyroidism. METHODS: This retrospective study comprised patients who received nivolumab for treating all types of cancer at our hospital between January 2015 and December 2019. The NLRs of patients were measured before each administration, and the patients were followed up till the administration of 12 doses. NLR at treatment initiation was compared between patients with and without hypothyroidism. Patients who developed hypothyroidism were categorized into three groups: those with NLR < 3.5, 3.5 to < 5, and ≥ 5 according to their maximum NLR from treatment initiation to hypothyroidism development. Further, the onset periods of hypothyroidism were compared between the groups. RESULTS: Overall, 104 patients were included in the analysis. Twenty-one patients developed hypothyroidism throughout the observation period. NLR at treatment initiation was significantly lower (2.54 ± 1.21 vs 4.58 ± 4.03; P = 0.017) in patients with hypothyroidism than in those without hypothyroidism, and patients with NLR < 5 had a significantly higher incidence of hypothyroidism than those with NLR ≥ 5 (26%: 20 of 78 patients vs 4%: 1 of 26 patients; P = 0.022). Additionally, treatment continuity in patients with hypothyroidism was significantly longer than in those without hypothyroidism (median not reached vs 7 times administration, P = 0.010). Patients with maximum NLR < 3.5 until the development of hypothyroidism had a significantly earlier onset of hypothyroidism than those with maximum NLR ≥ 5 (hazard ratio for low tertile [NLR < 3.5] vs high tertile [NLR ≥ 5]: 5.33, P = 0.011). CONCLUSION: Low NLR at treatment initiation increases the incidence of treatment-induced hypothyroidism. Furthermore, its persistence may be a risk factor for the early onset of hypothyroidism.

4.
PLoS One ; 16(12): e0261866, 2021.
Article in English | MEDLINE | ID: mdl-34941964

ABSTRACT

OBJECTIVES: Recently, incidence of Mycobacterium abscessus (Mab) pulmonary disease (Mab-PD) is increasing worldwide. We aimed to identify factors associated with severity of Mycobacterium abscessus (Mab) pulmonary disease (Mab-PD). METHODS: All patients diagnosed as Mab-PD based on the official ATS/IDSA statement between 2017 January 1 and 2021 July 31 were included (n = 13). We reviewed medical records, bacteriological and laboratory data of the patients. Severity of lung lesions and esophageal diameters in chest CT were quantitatively evaluated. Gaffky score in the sputum was used as airway mycobacterial burden. We explored the factors associated with high CT score and high Gaffky score. RESULTS: Maximum diameter of esophagus (MDE) in severe disease (CT score≧10) was greater than that in milder disease (CT score<10) (18.0±7.9mm, 9.3±3.1mm, respectively, p = 0.01), and MDE was well correlated with CT score (R = 0.69, p = 0.007). MDE in high mycobacterial burden group (Gaffky score ≧5) tended to be greater than that in low mycobacterial burden group (Gaffky score <5) (16.1±6.8mm, 10.1±5.5mm, respectively, p = 0.12), and MDE was well correlated with Gaffky score (R = 0.68, p = 0.009). Lung lesions were bilateral and predominant in middle or lower lobes. CONCLUSIONS: Esophageal dilatation was correlated with severity of Mab-PD and airway mycobacterial burden. Gastroesophageal reflux might be associated with Mab disease progression.


Subject(s)
Esophageal Diseases , Esophagus/pathology , Lung Diseases , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Aged , Dilatation, Pathologic , Esophageal Diseases/etiology , Esophageal Diseases/microbiology , Esophageal Diseases/pathology , Female , Humans , Lung Diseases/complications , Lung Diseases/metabolism , Lung Diseases/microbiology , Lung Diseases/pathology , Male , Middle Aged , Mycobacterium Infections, Nontuberculous/complications , Mycobacterium Infections, Nontuberculous/pathology , Retrospective Studies
6.
J Immunol ; 207(1): 65-76, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34135057

ABSTRACT

Insufficient autophagic degradation has been implicated in accelerated cellular senescence during chronic obstructive pulmonary disease (COPD) pathogenesis. Aging-linked and cigarette smoke (CS)-induced functional deterioration of lysosomes may be associated with impaired autophagy. Lysosomal membrane permeabilization (LMP) is indicative of damaged lysosomes. Galectin-3 and tripartite motif protein (TRIM) 16 play a cooperative role in recognizing LMP and inducing lysophagy, a lysosome-selective autophagy, to maintain lysosome function. In this study, we sought to examine the role of TRIM16-mediated lysophagy in regulating CS-induced LMP and cellular senescence during COPD pathogenesis by using human bronchial epithelial cells and lung tissues. CS extract (CSE) induced lysosomal damage via LMP, as detected by galectin-3 accumulation. Autophagy was responsible for modulating LMP and lysosome function during CSE exposure. TRIM16 was involved in CSE-induced lysophagy, with impaired lysophagy associated with lysosomal dysfunction and accelerated cellular senescence. Airway epithelial cells in COPD lungs showed an increase in lipofuscin, aggresome and galectin-3 puncta, reflecting accumulation of lysosomal damage with concomitantly reduced TRIM16 expression levels. Human bronchial epithelial cells isolated from COPD patients showed reduced TRIM16 but increased galectin-3, and a negative correlation between TRIM16 and galectin-3 protein levels was demonstrated. Damaged lysosomes with LMP are accumulated in epithelial cells in COPD lungs, which can be at least partly attributed to impaired TRIM16-mediated lysophagy. Increased LMP in lung epithelial cells may be responsible for COPD pathogenesis through the enhancement of cellular senescence.


Subject(s)
Lysosomes/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Tripartite Motif Proteins/immunology , Ubiquitin-Protein Ligases/immunology , Cells, Cultured , Humans , Hydrogen-Ion Concentration , Pulmonary Disease, Chronic Obstructive/pathology
7.
J Asthma Allergy ; 14: 609-618, 2021.
Article in English | MEDLINE | ID: mdl-34113131

ABSTRACT

BACKGROUND: In Japan, biologic therapy was initiated for patients with severe asthma in 2009. In recent years, four biologics with different mechanisms of action have become available in the clinical setting. However, the efficacy of switching between biologics remains uncertain. METHODS: To elucidate the efficacy of switching between biologics, 97 patients were enrolled who had received any biologic therapy for severe asthma at Jikei University Hospital, Tokyo, Japan, from July 2009 to December 2020. We retrospectively examined the patient characteristics, biomarkers, pulmonary function test results, selected biologics, and efficacy. RESULTS: Thirty-one males and 66 females received any biologics. The mean age was 53.3 years at the initiation of biologic therapy. Initially, 33, 41, 15 and eight patients received omalizumab, mepolizumab, benralizumab, and dupilumab, respectively. Among three representative indicators for biologics administration, the peripheral blood eosinophil count, serum IgE levels and fractional exhaled nitric oxide, 64% of the patients had two indicators, and 28% had three indicators. Thirty-four patients (35%) switched from the initial biologic to another, and the reasons for switching included persistent asthmatic symptoms (n=22), schedule of hospital visits (n=5), and other reasons. Thus, the treatment was effective in 11 patients after switching. In addition, two patients received combination therapy with different biologics. Eighteen patients (19%) interrupted treatment for various reasons. Regardless of whether the biologic was the initial therapy, the overall efficacy of the four biologics was 60% based on the global evaluation of treatment effectiveness. CONCLUSION: Switching between biologics can be a promising option for severe asthma patients in whom treatment with an initial biologic is ineffective.

8.
BMC Pulm Med ; 20(1): 207, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32746787

ABSTRACT

BACKGROUND: Benralizumab, an anti-interleukin-5 (IL-5) receptor α monoclonal antibody, significantly reduces the number of annual exacerbations and oral corticosteroid (OCS) maintenance doses for patients with severe eosinophilic asthma (SEA). However, few studies on the efficacy of this biologic in real life are available. The aim was to elucidate the efficacy of benralizumab by evaluating changes in clinical parameters after benralizumab treatment in patients with SEA. METHODS: From July 2018 to December 2019, 24 Japanese patients with SEA received benralizumab at Jikei University Hospital. We retrospectively evaluated the patients' characteristics, parameters, numbers of exacerbations and maintenance OCS doses. RESULTS: Among the 24 patients, eleven patients had received mepolizumab treatment and were directly switched to benralizumab. The peripheral blood eosinophil and basophil counts significantly decreased after benralizumab treatment regardless of previous mepolizumab treatment. Pulmonary function, Asthma Control Test scores, the numbers of annual exacerbations and maintenance OCS doses in patients without previous mepolizumab treatment tended to improve without significant differences. Fourteen patients (58%) were responders according to the Global Evaluation of Treatment Effectiveness (GETE) score. The proportion of GETE responders among patients with aspirin-exacerbated respiratory disease (AERD) tended to be lower than that among patients without AERD (p = 0.085). After benralizumab treatment, the change in the forced expiratory volume in 1 s from baseline was 200 ml or greater in eight patients (33%), including three patients who were switched from mepolizumab. CONCLUSION: Benralizumab treatment improved and controlled asthma symptoms based on the GETE score.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/drug therapy , Adult , Aged , Asthma/immunology , Asthma/pathology , Asthma, Aspirin-Induced/drug therapy , Disease Progression , Drug Therapy, Combination , Eosinophils/immunology , Eosinophils/pathology , Female , Forced Expiratory Volume , Humans , Interleukin-5/antagonists & inhibitors , Leukocyte Count , Logistic Models , Male , Middle Aged , Multivariate Analysis , Retrospective Studies , Severity of Illness Index , Young Adult
9.
J Immunol ; 205(5): 1256-1267, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32699159

ABSTRACT

Cigarette smoke (CS) induces accumulation of misfolded proteins with concomitantly enhanced unfolded protein response (UPR). Increased apoptosis linked to UPR has been demonstrated in chronic obstructive pulmonary disease (COPD) pathogenesis. Chaperone-mediated autophagy (CMA) is a type of selective autophagy for lysosomal degradation of proteins with the KFERQ peptide motif. CMA has been implicated in not only maintaining nutritional homeostasis but also adapting the cell to stressed conditions. Although recent papers have shown functional cross-talk between UPR and CMA, mechanistic implications for CMA in COPD pathogenesis, especially in association with CS-evoked UPR, remain obscure. In this study, we sought to examine the role of CMA in regulating CS-induced apoptosis linked to UPR during COPD pathogenesis using human bronchial epithelial cells (HBEC) and lung tissues. CS extract (CSE) induced LAMP2A expression and CMA activation through a Nrf2-dependent manner in HBEC. LAMP2A knockdown and the subsequent CMA inhibition enhanced UPR, including CHOP expression, and was accompanied by increased apoptosis during CSE exposure, which was reversed by LAMP2A overexpression. Immunohistochemistry showed that Nrf2 and LAMP2A levels were reduced in small airway epithelial cells in COPD compared with non-COPD lungs. Both Nrf2 and LAMP2A levels were significantly reduced in HBEC isolated from COPD, whereas LAMP2A levels in HBEC were positively correlated with pulmonary function tests. These findings suggest the existence of functional cross-talk between CMA and UPR during CSE exposure and also that impaired CMA may be causally associated with COPD pathogenesis through enhanced UPR-mediated apoptosis in epithelial cells.


Subject(s)
Apoptosis/physiology , Chaperone-Mediated Autophagy/physiology , Pulmonary Disease, Chronic Obstructive/pathology , Unfolded Protein Response/physiology , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Lung/metabolism , Lung/pathology , Lysosomes/metabolism , Lysosomes/pathology , NF-E2-Related Factor 2/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Smoke/adverse effects , Nicotiana/adverse effects
10.
Cancer Immunol Immunother ; 69(10): 2033-2039, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32415507

ABSTRACT

Immune checkpoint inhibitor (ICI)-related pneumonitis is a relatively rare but clinically serious and potentially life-threatening adverse event. The majority of cases can be managed by drug discontinuation, with the administration of corticosteroids added in severe cases. However, worsening of pneumonitis can develop in a subset of patients despite treatment with high doses of corticosteroids. We herein report a case of steroid-refractory ICI-related pneumonitis in a recurrent non-small cell lung cancer (NSCLC) patient treated with pembrolizumab that was successfully improved by triple combination therapy (high-dose corticosteroids, tacrolimus, and cyclophosphamide). After 3 weeks of initial pembrolizumab administration, the patient was diagnosed with ICI-related pneumonitis. Chest computed tomography (CT) showed patchy distributed bilateral consolidation and ground-glass opacities (GGOs) with traction bronchiectasis and bronchiolectasis resembling the diffuse alveolar damage (DAD) radiographic pattern. Although methylprednisolone pulse therapy was initiated, worsening of respiratory failure resulted in the patient being transferred to the intensive care unit. Because of an insufficient therapeutic response to high-dose corticosteroids, tacrolimus and cyclophosphamide pulse therapy were additively performed as triple combination therapy according to the treatment strategy for pulmonary complications of clinically amyopathic dermatomyositis (CADM). In response to this triple combination therapy, the patient's respiratory condition gradually improved, and chest CT showed the marked amelioration of pulmonary opacities. This is the first report suggesting the efficacy of triple combination therapy (high-dose corticosteroids, tacrolimus, and cyclophosphamide) for steroid-refractory ICI-related pneumonitis complicated with respiratory failure.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Immunosuppressive Agents/therapeutic use , Pneumonia/drug therapy , Adrenal Cortex Hormones/therapeutic use , Antineoplastic Agents, Immunological/adverse effects , Carcinoma, Non-Small-Cell Lung/pathology , Cyclophosphamide/therapeutic use , Drug Therapy, Combination , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Male , Middle Aged , Pneumonia/chemically induced , Pneumonia/pathology , Prognosis , Tacrolimus/therapeutic use
11.
Anticancer Res ; 39(12): 6851-6857, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31810952

ABSTRACT

BACKGROUND: This study aimed to determine whether the neutrophil-to-lymphocyte ratio (NLR) reflected poor treatment benefits in patients with tumor proportion score (TPS) ≥50% and who under went first-line pembrolizumab monotherapy. PATIENTS AND METHODS: This study retrospectively analyzed patients with untreated stage III/IV or recurrent non-small cell lung cancer (NSCLC) with TPS ≥50% and who received pembrolizumab monotherapy at two hospitals between February 2017 and April 2019. The NLR was calculated from pre-treatment complete blood counts. RESULTS: A total of 51 previously untreated patients with NSCLC who had TPS ≥50% and who underwent pembrolizumab monotherapy were evaluated. Multivariate analysis revealed that high NLR, Eastern Cooperative Oncology Group performance status (PS) ≥2, stage IV or recurrent cancer, and TPS=50-74% were significantly and independently associated with poor progression-free survival. Moreover, high NLR and PS ≥2 were significantly associated with short overall survival. CONCLUSION: A high pre-treatment NLR was associated with significantly short progression-free and overall survival in previously untreated patients with NSCLC with high expression of programmed cell-death ligand 1 treated with pembrolizumab monotherapy.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/metabolism , Female , Humans , Leukocyte Count , Lung Neoplasms/blood , Lung Neoplasms/metabolism , Lymphocyte Count , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Analysis , Treatment Outcome , Up-Regulation
12.
BMC Pulm Med ; 19(1): 176, 2019 Oct 12.
Article in English | MEDLINE | ID: mdl-31606052

ABSTRACT

BACKGROUND: Several major randomized control studies have demonstrated that mepolizumab, an anti-IL-5 monoclonal antibody, is effective for patients with severe eosinophilic asthma who show exacerbation or require systemic corticosteroid maintenance therapy. However, the predictive factors of the response to mepolizumab other than blood eosinophil count are unclear in clinical practice. OBJECTIVE: To elucidate the predictive factors of the response to mepolizumab for patients with severe eosinophilic asthma. METHODS: From July 2016 to December 2017, 28 patients with severe asthma received mepolizumab in our hospital. To determine the predictive factors, we retrospectively evaluated patient characteristics, comorbidities, biomarkers, pulmonary function, maintenance dose of systemic corticosteroids and number of exacerbations. RESULTS: The response rate to mepolizumab treatment was 70% (19/27; one pregnant woman was excluded from analysis). Compared with 11 patients without eosinophilic chronic rhinosinusitis (ECRS), 16 patients with ECRS showed significantly improved systemic corticosteroid-sparing effects [- 71.3 ± 37.0% vs - 10.7 ± 20.1%, P = 0.006], change from baseline FeNO [- 19 ± 57 (%) vs 30 ± 77 (%), P = 0.023] and symptoms [14 patients (88%) vs five patients (45%), P = 0.033]. ECRS was identified as a predictive factor of the response to mepolizumab in a multivariate logistic regression analysis [odds ratio = 22.5, 95% CI (1.5-336), P = 0.024]. Of the eight patients previously administered omalizumab, five responded to mepolizumab. Staphylococcus aureus enterotoxin B IgE results were negative in 80% of responders (P = 0.14). CONCLUSION: Both groups showed improved symptom scores and a decreased number of exacerbations. Mepolizumab substantially improved the clinical variables of patients with eosinophilic asthma complicated with ECRS.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/drug therapy , Eosinophilia/drug therapy , Rhinitis/drug therapy , Sinusitis/drug therapy , Adult , Asthma/complications , Chronic Disease , Disease Progression , Eosinophilia/complications , Female , Humans , Japan , Leukocyte Count , Logistic Models , Male , Middle Aged , Multivariate Analysis , Retrospective Studies , Rhinitis/complications , Severity of Illness Index , Sinusitis/complications , Treatment Outcome
13.
J Immunol ; 203(8): 2076-2087, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31534007

ABSTRACT

The imbalanced redox status in lung has been widely implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis. To regulate redox status, hydrogen peroxide must be adequately reduced to water by glutathione peroxidases (GPx). Among GPx isoforms, GPx4 is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide. Increased lipid peroxidation products have been demonstrated in IPF lungs, suggesting the participation of imbalanced lipid peroxidation in IPF pathogenesis, which can be modulated by GPx4. In this study, we sought to examine the involvement of GPx4-modulated lipid peroxidation in regulating TGF-ß-induced myofibroblast differentiation. Bleomycin-induced lung fibrosis development in mouse models with genetic manipulation of GPx4 were examined. Immunohistochemical evaluations for GPx4 and lipid peroxidation were performed in IPF lung tissues. Immunohistochemical evaluations showed reduced GPx4 expression levels accompanied by increased 4-hydroxy-2-nonenal in fibroblastic focus in IPF lungs. TGF-ß-induced myofibroblast differentiation was enhanced by GPx4 knockdown with concomitantly enhanced lipid peroxidation and SMAD2/SMAD3 signaling. Heterozygous GPx4-deficient mice showed enhancement of bleomycin-induced lung fibrosis, which was attenuated in GPx4-transgenic mice in association with lipid peroxidation and SMAD signaling. Regulating lipid peroxidation by Trolox showed efficient attenuation of bleomycin-induced lung fibrosis development. These findings suggest that increased lipid peroxidation resulting from reduced GPx4 expression levels may be causally associated with lung fibrosis development through enhanced TGF-ß signaling linked to myofibroblast accumulation of fibroblastic focus formation during IPF pathogenesis. It is likely that regulating lipid peroxidation caused by reduced GPx4 can be a promising target for an antifibrotic modality of treatment for IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Animals , Bleomycin , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Lipid Peroxidation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myofibroblasts/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/deficiency , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Transforming Growth Factor beta/metabolism
14.
Cancers (Basel) ; 11(6)2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31163629

ABSTRACT

Background: Prostaglandin E2 (PGE2) is metabolized to prostaglandin E-major urinary metabolite (PGE-MUM). Enhanced cyclooxygenase-2 (COX-2) expression demonstrated in lung adenocarcinoma indicates increased PGE-MUM levels in patients with lung adenocarcinoma. Objectives: We aimed to elucidate the clinical usefulness of measuring PGE-MUM as an indicator of tumor burden in patients with lung adenocarcinoma. Methods: PGE-MUM was measured by a radioimmunoassay in control healthy volunteers (n = 124) and patients with lung adenocarcinoma (n = 54). Associations between PGE-MUM levels and clinical characteristics of the patients (including lung cancer stage and TNM factors (T: Tumor, N: Node, M: Metastasis) were examined. Results: PGE-MUM levels were significantly elevated in patients with lung adenocarcinoma. A PGE-MUM level of 14.9 µg/g∙Cr showed 70.4% sensitivity and 67.7% specificity for the diagnosis of lung adenocarcinoma. PGE-MUM levels tended to be positively correlated with cancer progression as determined by the TNM staging system. Advanced stage (stage III, stage IV, and recurrence) was significantly associated with high PGE-MUM levels by logistic regression analysis. No apparent correlation was demonstrated between PGE-MUM and carcinoma embryonic antigen (CEA) levels. Conclusions: PGE-MUM can be a promising biomarker reflecting the systemic tumor burden of lung adenocarcinoma.

15.
J Immunol ; 202(5): 1428-1440, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30692212

ABSTRACT

Downregulation of lamin B1 has been recognized as a crucial step for development of full senescence. Accelerated cellular senescence linked to mechanistic target of rapamycin kinase (MTOR) signaling and accumulation of mitochondrial damage has been implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. We hypothesized that lamin B1 protein levels are reduced in COPD lungs, contributing to the process of cigarette smoke (CS)-induced cellular senescence via dysregulation of MTOR and mitochondrial integrity. To illuminate the role of lamin B1 in COPD pathogenesis, lamin B1 protein levels, MTOR activation, mitochondrial mass, and cellular senescence were evaluated in CS extract (CSE)-treated human bronchial epithelial cells (HBEC), CS-exposed mice, and COPD lungs. We showed that lamin B1 was reduced by exposure to CSE and that autophagy was responsible for lamin B1 degradation in HBEC. Lamin B1 reduction was linked to MTOR activation through DEP domain-containing MTOR-interacting protein (DEPTOR) downregulation, resulting in accelerated cellular senescence. Aberrant MTOR activation was associated with increased mitochondrial mass, which can be attributed to peroxisome proliferator-activated receptor γ coactivator-1ß-mediated mitochondrial biogenesis. CS-exposed mouse lungs and COPD lungs also showed reduced lamin B1 and DEPTOR protein levels, along with MTOR activation accompanied by increased mitochondrial mass and cellular senescence. Antidiabetic metformin prevented CSE-induced HBEC senescence and mitochondrial accumulation via increased DEPTOR expression. These findings suggest that lamin B1 reduction is not only a hallmark of lung aging but is also involved in the progression of cellular senescence during COPD pathogenesis through aberrant MTOR signaling.


Subject(s)
Cellular Senescence/immunology , Lamin Type B/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Cellular Senescence/genetics , Humans , Lamin Type B/genetics , Oxidation-Reduction , Pulmonary Disease, Chronic Obstructive/pathology , Tumor Cells, Cultured
16.
Autophagy ; 15(3): 510-526, 2019 03.
Article in English | MEDLINE | ID: mdl-30290714

ABSTRACT

Cigarette smoke (CS)-induced accumulation of mitochondrial damage has been widely implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Mitophagy plays a crucial role in eliminating damaged mitochondria, and is governed by the PINK1 (PTEN induced putative protein kinase 1)-PRKN (parkin RBR E3 ubiquitin protein ligase) pathway. Although both increased PINK1 and reduced PRKN have been implicated in COPD pathogenesis in association with mitophagy, there are conflicting reports for the role of mitophagy in COPD progression. To clarify the involvement of PRKN-regulated mitophagy in COPD pathogenesis, prkn knockout (KO) mouse models were used. To illuminate how PINK1 and PRKN regulate mitophagy in relation to CS-induced mitochondrial damage and cellular senescence, overexpression and knockdown experiments were performed in airway epithelial cells (AEC). In comparison to wild-type mice, prkn KO mice demonstrated enhanced airway wall thickening with emphysematous changes following CS exposure. AEC in CS-exposed prkn KO mice showed accumulation of damaged mitochondria and increased oxidative modifications accompanied by accelerated cellular senescence. In vitro experiments showed PRKN overexpression was sufficient to induce mitophagy during CSE exposure even in the setting of reduced PINK1 protein levels, resulting in attenuation of mitochondrial ROS production and cellular senescence. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, indicating that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy during CSE exposure. These results suggest that PRKN levels may play a pivotal role in COPD pathogenesis by regulating mitophagy, suggesting that PRKN induction could mitigate the progression of COPD. Abbreviations: AD: Alzheimer disease; AEC: airway epithelial cells; BALF: bronchoalveolar lavage fluid; AKT: AKT serine/threonine kinase; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; COPD: chronic obstructive pulmonary disease; CS: cigarette smoke; CSE: CS extract; CXCL1: C-X-C motif chemokine ligand 1; CXCL8: C-X-C motif chemokine ligand 8; HBEC: human bronchial epithelial cells; 4-HNE: 4-hydroxynonenal; IL: interleukin; KO: knockout; LF: lung fibroblasts; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; 8-OHdG: 8-hydroxy-2'-deoxyguanosine; OPTN: optineurin; PRKN: parkin RBR E3 ubiquitin protein ligase; PCD: programmed cell death; PFD: pirfenidone; PIK3C: phosphatidylinositol-4:5-bisphosphate 3-kinase catalytic subunit; PINK1: PTEN induced putative kinase 1; PTEN: phosphatase and tensin homolog; RA: rheumatoid arthritis; ROS: reactive oxygen species; SA-GLB1/ß-Gal: senescence-associated-galactosidase, beta 1; SASP: senescence-associated secretory phenotype; SNP: single nucleotide polymorphism; TNF: tumor necrosis factor.


Subject(s)
Cellular Senescence , Mitochondria/metabolism , Mitophagy , Pulmonary Disease, Chronic Obstructive/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Cellular Senescence/drug effects , Cellular Senescence/genetics , Cigarette Smoking/adverse effects , Disease Models, Animal , Epithelial Cells/metabolism , Humans , Lung/pathology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron , Mitochondria/genetics , Mitochondria/pathology , Mitochondria/ultrastructure , Mitophagy/drug effects , Mitophagy/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , PTEN Phosphohydrolase/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Pyridones/pharmacology , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/genetics
17.
Clin Lung Cancer ; 19(5): 410-417.e1, 2018 09.
Article in English | MEDLINE | ID: mdl-29859759

ABSTRACT

BACKGROUND: Biomarkers for predicting the effect of anti-programmed cell death 1 (PD-1) monoclonal antibody against non-small-cell lung cancer (NSCLC) are urgently required. Although it is known that the blood levels of soluble programmed cell death ligand 1 (sPD-L1) are elevated in various malignancies, the nature of sPD-L1 has not been thoroughly elucidated. We investigated the significance of plasma sPD-L1 levels as a biomarker for anti-PD-1 monoclonal antibody, nivolumab therapy. PATIENTS AND METHODS: The present prospective study included 39 NSCLC patients. The patients were treated with nivolumab at the dose of 3 mg/kg every 2 weeks, and the effects of nivolumab on NSCLC were assessed according to the change in tumor size, time to treatment failure (TTF), and overall survival (OS). The baseline plasma sPD-L1 concentration was determined using an enzyme-linked immunosorbent assay. RESULTS: The area under the curve of the receiver operating characteristic curve was 0.761. The calculated optimal cutoff point for sPD-L1 in the plasma samples was 3.357 ng/mL. Of the 39 patients, 59% with low plasma sPD-L1 levels achieved a complete response or partial response and 25% of those with high plasma sPD-L1 levels did so. In addition, 22% of the patients with low plasma sPD-L1 levels developed progressive disease compared with 75% of those with high plasma sPD-L1 levels. The TTF and OS were significantly longer for those patients with low plasma sPD-L1 levels compared with the TTF and OS for those with high plasma sPD-L1 levels. CONCLUSION: The clinical benefit from nivolumab therapy was significantly associated with the baseline plasma sPD-L1 levels. Plasma sPD-L1 levels might represent a novel biomarker for the prediction of the efficacy of nivolumab therapy against NSCLC.


Subject(s)
B7-H1 Antigen/blood , Carcinoma, Non-Small-Cell Lung/blood , Lung Neoplasms/blood , Neoplasm Recurrence, Local/blood , Nivolumab/therapeutic use , Adenocarcinoma/blood , Adenocarcinoma/drug therapy , Adenocarcinoma/secondary , Aged , Aged, 80 and over , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/blood , Carcinoma, Large Cell/blood , Carcinoma, Large Cell/drug therapy , Carcinoma, Large Cell/secondary , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/secondary , Carcinoma, Squamous Cell/blood , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/secondary , Female , Follow-Up Studies , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Prognosis , Prospective Studies , Survival Rate
18.
BMC Pulm Med ; 18(1): 4, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29316890

ABSTRACT

BACKGROUND: Postoperative pulmonary complications (PPC) in patients with pulmonary diseases remain to be resolved clinical issue. However, most evidence regarding PPC has been established more than 10 years ago. Therefore, it is necessary to evaluate perioperative management using new inhalant drugs in patients with obstructive pulmonary diseases. METHODS: April 2014 through March 2015, 346 adult patients with pulmonary diseases (257 asthma, 89 chronic obstructive pulmonary disease (COPD)) underwent non-pulmonary surgery except cataract surgery in our university hospital. To analyze the risk factors for PPC, we retrospectively evaluated physiological backgrounds, surgical factors and perioperative specific treatment for asthma and COPD. RESULTS: Finally, 29 patients with pulmonary diseases (22 asthma, 7 COPD) had PPC. In patients with asthma, smoking index (≥ 20 pack-years), peripheral blood eosinophil count (≥ 200/mm3) and severity (Global INitiative for Asthma(GINA) STEP ≥ 3) were significantly associated with PPC in the multivariate logistic regression analysis [odds ratio (95% confidence interval) = 5.4(1.4-20.8), 0.31 (0.11-0.84) and 3.2 (1.04-9.9), respectively]. In patients with COPD, age, introducing treatment for COPD, upper abdominal surgery and operation time (≥ 5 h) were significantly associated with PPC [1.18 (1.00-1.40), 0.09 (0.01-0.81), 21.2 (1.3-349) and 9.5 (1.2-77.4), respectively]. CONCLUSIONS: History of smoking or severe asthma is a risk factor of PPC in patients with asthma, and age, upper abdominal surgery, or long operation time is a risk factor of PPC in patients with COPD. Adequate inhaled corticosteroids treatment in patients with eosinophilic asthma and introducing treatment for COPD in patients with COPD could reduce PPCs.


Subject(s)
Asthma/epidemiology , Neutrophils , Postoperative Complications/epidemiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Abdomen/surgery , Adult , Age Factors , Aged , Aged, 80 and over , Asthma/blood , Asthma/physiopathology , Female , Humans , Leukocyte Count , Male , Middle Aged , Operative Time , Pulmonary Disease, Chronic Obstructive/drug therapy , Retrospective Studies , Risk Factors , Severity of Illness Index , Smoking/epidemiology , Young Adult
20.
Respir Res ; 18(1): 114, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28577568

ABSTRACT

BACKGROUND: Pirfenidone (PFD) is an anti-fibrotic agent used to treat idiopathic pulmonary fibrosis (IPF), but its precise mechanism of action remains elusive. Accumulation of profibrotic myofibroblasts is a crucial process for fibrotic remodeling in IPF. Recent findings show participation of autophagy/mitophagy, part of the lysosomal degradation machinery, in IPF pathogenesis. Mitophagy has been implicated in myofibroblast differentiation through regulating mitochondrial reactive oxygen species (ROS)-mediated platelet-derived growth factor receptor (PDGFR) activation. In this study, the effect of PFD on autophagy/mitophagy activation in lung fibroblasts (LF) was evaluated, specifically the anti-fibrotic property of PFD for modulation of myofibroblast differentiation during insufficient mitophagy. METHODS: Transforming growth factor-ß (TGF-ß)-induced or ATG5, ATG7, and PARK2 knockdown-mediated myofibroblast differentiation in LF were used for in vitro models. The anti-fibrotic role of PFD was examined in a bleomycin (BLM)-induced lung fibrosis model using PARK2 knockout (KO) mice. RESULTS: We found that PFD induced autophagy/mitophagy activation via enhanced PARK2 expression, which was partly involved in the inhibition of myofibroblast differentiation in the presence of TGF-ß. PFD inhibited the myofibroblast differentiation induced by PARK2 knockdown by reducing mitochondrial ROS and PDGFR-PI3K-Akt activation. BLM-treated PARK2 KO mice demonstrated augmentation of lung fibrosis and oxidative modifications compared to those of BLM-treated wild type mice, which were efficiently attenuated by PFD. CONCLUSIONS: These results suggest that PFD induces PARK2-mediated mitophagy and also inhibits lung fibrosis development in the setting of insufficient mitophagy, which may at least partly explain the anti-fibrotic mechanisms of PFD for IPF treatment.


Subject(s)
Antioxidants/pharmacology , Cell Differentiation/drug effects , Lung/drug effects , Mitochondria/drug effects , Mitophagy/drug effects , Myofibroblasts/drug effects , Pulmonary Fibrosis/drug therapy , Pyridones/pharmacology , Animals , Autophagy/drug effects , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Bleomycin , Cells, Cultured , Disease Models, Animal , Humans , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondria/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , RNA Interference , Reactive Oxygen Species/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction/drug effects , Transfection , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...