Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 106(3-1): 034902, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36266877

ABSTRACT

The role of fixed degrees of freedom in soft or granular matter systems has broad applicability and theoretical interest. Here we address questions of the geometrical role that a scaffolding of fixed particles plays in tuning the threshold volume fraction and force network in the vicinity of jamming. Our two-dimensional simulated system consists of soft particles and fixed "pins," both of which harmonically repel overlaps. On the one hand, we find that many of the critical scalings associated with jamming in the absence of pins continue to hold in the presence of even dense pin latices. On the other hand, the presence of pins lowers the jamming threshold in a universal way at low pin densities and a geometry-dependent manner at high pin densities, producing packings with lower densities and fewer contacts between particles. The onset of strong lattice dependence coincides with the development of bond-orientational order. Furthermore, the presence of pins dramatically modifies the network of forces, with both unusually weak and unusually strong forces becoming more abundant. The spatial organization of this force network depends on pin geometry and is described in detail. Using persistent homology, we demonstrate that pins modify the topology of the network. Finally, we observe clear signatures of this developing bond-orientational order and broad force distribution in the elastic moduli which characterize the linear response of these packings to strain.

2.
Phys Rev E ; 96(2-1): 022903, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28950462

ABSTRACT

We present results from a planar shear experiment in which a two-dimensional horizontal granular assembly of pentagonal particles sheared between two parallel walls is subjected to external vibration. Particle tracking and photoelastic measurements are used to quantify both grain scale motion and interparticle stresses with and without imposed vibrations. We characterize the particle motion in planar shear and find that flow of these strongly interlocking particles consists of transient vortex motion with a mean flow given by the sum of exponential profiles imposed by the shearing walls. Vibration is applied either through the shearing surface or as bulk vertical vibration of the entire shearing region with dimensionless accelerations Γ=A(2πf)^{2}/g≈0-2. In both cases, increasing amplitude of vibration A at fixed frequency f leads to failure of the force network, reduction in mean stress, and a corresponding reduction in imposed strain. Vibration of the shearing surface is shown to induce the preferential slipping of large-angle force chains. These effects are insensitive to changes in frequency in the range studied (f=30-120 Hz), as sufficiently large displacements are required to relieve the geometrical frustration of the jammed states.

3.
Article in English | MEDLINE | ID: mdl-23944450

ABSTRACT

We present statistics on granular avalanches in a rotating drum with and without imposed vertical vibration. The experiment consists of a quasi-two-dimensional, vertical drum containing pentagonal particles and rotated at a constant angular velocity. The drum rests on an electromagnetic shaker to allow vibration of the assembly as it rotates. We measure time series of the slope of the interface and find that the critical angle for slope failure θ(c) and the resulting angle of repose θ(r) are broadly distributed with an approximate power-law distribution of avalanches θ(c)-θ(r) for large avalanches. The faceted pentagonal grains used lead to significant interlocking with critical and repose angles (θ(c)≈45° and θ(r)≈39°) larger than experiments using spherical grains, even with vibration, and avalanche magnitudes correlated with the prior build-up and anti-correlated with the prior avalanche. We find that the stability of the assembly increases with small vibrations and is destabilized at vibration amplitudes above a dimensionless acceleration (peak acceleration divided by acceleration due to gravity) of Γ=0.2. We also study history dependence of the avalanches by periodically oscillating the drum to compare the initial avalanche upon reversal of shear to steady-state distributions for avalanches during continuous rotation. We observe history dependence as an initial decrease in critical angle upon reversal of the drum rotation direction, indicating that a texture is induced to resist continued shear such that the surface is weaker to reversals in shear direction. Memory of this history is removed by sufficient external vibration (Γ≥0.8), which leads to compaction and relaxation of the surface layer grains responsible for avalanching dynamics, as initial and steady-state avalanche distributions become indistinguishable.

4.
Phys Rev Lett ; 100(20): 208302, 2008 May 23.
Article in English | MEDLINE | ID: mdl-18518583

ABSTRACT

Through 2D granular Couette flow experiments, we probe failure and deformation of disordered solids under shear. Shear produces a mean azimuthal flow, smooth affine deformations, and irreversible so-called nonaffine particle displacements. We find that these processes are all of comparable magnitude and depend on the local shear rate. We compute the parameter of Falk and Langer characterizing nonaffine motion, Dmin2, and find that it is reasonably well described in terms of collections of single particles making locally nearly isotropic random steps, delta ri. Distributions for single particle nonaffine displacements, delta ri, satisfy P1(delta ri) proportional, variantexp[-|delta ri/Delta r|alpha] (alpha < or approximately 2).

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(1 Pt 1): 011601, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16089973

ABSTRACT

We present experiments on the doublon growth morphology in directional solidification. Samples used are succinonitrile with small amounts of poly(ethylene oxide), acetone, or camphor as the solute. Doublons, or symmetry-broken dendrites, are generic diffusion-limited growth structures expected at large undercooling and low anisotropy. Low anisotropy growth is achieved by selecting a grain near the {111} plane leading to either seaweed (dense branching morphology) or doublon growth depending on experimental parameters. We find selection of doublons to be strongly dependent on solute concentration and sample orientation. Doublons are selected at low concentrations (low solutal undercooling) in contrast to the prediction of doublons at large thermal undercooling in pure materials. Doublons also exhibit preferred growth directions and changing the orientation of a specific doublonic grain changes the character and stability of the doublons. We observe transitions between seaweed and doublon growth with changes in concentration and sample orientation.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(3 Pt 1): 031308, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15089287

ABSTRACT

Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.

SELECTION OF CITATIONS
SEARCH DETAIL