Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cent Eur J Public Health ; 30(4): 230-234, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36718925

ABSTRACT

OBJECTIVES: The aim of the study was to investigate possible emergence of resistance to disinfectants in Bordetella pertussis strains isolated from patients with whooping cough in the Czech Republic in 2014 and 2015. METHODS: In an EN1500-based study, clean and dry fingertips of volunteers were always contaminated with one of the two clinical isolates of B. pertussis. Clinical isolates of B. pertussis were obtained from the National Reference Laboratory for Pertussis and Diphtheria, National Institute of Public Health (NIPH), Prague, Czech Republic. Dry and contaminated fingertips were immersed in 10 ml medium and then rubbed with the fingers for 1 minute. After that, the hands were treated with isopropanol 60% v/v or tested products, and then the fingertips were rubbed again into 10 ml of pure medium for 1 minute. The suspensions obtained were immediately diluted and plated on charcoal medium. RESULTS: Ethanol-based product A and propanol-based product B showed bactericidal activity after 30 s of contact. The confidence interval limit for product A and B was 0.12 and 0.19, respectively. Quaternary ammonium compound-based product C was found to be ineffective after 30 s of contact. The confidence interval limit for product C was 0.62. CONCLUSION: Products A and B were assessed as effective against clinical isolates of B. pertussis in accordance with EN 1500. Quaternary ammonium compound-based product C did not comply with the requirements of EN 1500.


Subject(s)
Hand Sanitizers , Whooping Cough , Humans , Bordetella pertussis , Quaternary Ammonium Compounds , Czech Republic
2.
Biochim Biophys Acta ; 1858(12): 2965-2971, 2016 12.
Article in English | MEDLINE | ID: mdl-27620333

ABSTRACT

Surfactin, an anionic lipopeptide produced by Bacillus subtilis, is an antimicrobial that targets the cytoplasmic membrane. Nowadays it appears increasingly apparent that the mechanism of resistance against these types of antibiotics consists of target site modification. This prompted us to investigate whether the surfactin non-producing strain B. subtilis 168 changes its membrane composition in response to a sublethal surfactin concentration. Here we show that the exposure of B. subtilis to surfactin at concentrations of 350 and 650 µg/ml (designated as SF350 and SF650, respectively) leads to a concentration-dependent growth arrest followed by regrowth with an altered growth rate. Analysis of the membrane lipid composition revealed modifications both in the polar head group and the fatty acid region. The presence of either surfactin concentration resulted in a reduction in the content of the major membrane phospholipid phosphatidylglycerol (PG) and increase in phosphatidylethanolamine (PE), which was accompanied by elevated levels of phosphatidic acid (PA) in SF350 cultures. The fatty acid analysis of SF350 cells showed a marked increase in non-branched high-melting fatty acids, which lowered the fluidity of the membrane interior measured as the steady-state fluorescence anisotropy of DPH. The liposome leakage of carboxyfluorescein-loaded vesicles resembling the phospholipid composition of surfactin-adapted cells showed that the susceptibility to surfactin-induced leakage is strongly reduced when the PG/PE ratio decreases and/or PA is included in the target bilayer. We concluded that the modifications of the phospholipid content of B. subtilis cells might provide a self-tolerance of the membrane active surfactin.


Subject(s)
Bacillus subtilis/drug effects , Lipopeptides/pharmacology , Membrane Lipids/analysis , Peptides, Cyclic/pharmacology , Phospholipids/analysis , Bacillus subtilis/chemistry , Bacillus subtilis/growth & development , Fatty Acids/analysis , Membrane Fluidity/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL