Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Anim Genet ; 52(4): 440-450, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34096632

ABSTRACT

The number of teats is a reproductive-related trait of great economic relevance as it affects the mothering ability of the sows and thus the number of properly weaned piglets. Moreover, genetic improvement of this trait is fundamental to parallelly help the selection for increased litter size. We present the results of single-marker and haplotypes-based genome-wide association studies for the number of teats in two large cohorts of heavy pig breeds (Italian Large White and Italian Landrace) including 3990 animals genotyped with the 70K GGP Porcine BeadChip and other 1927 animals genotyped with the Illumina PorcineSNP60 BeadChip. In the Italian Large White population, genome scans identified three genome regions (SSC7, SSC10, and SSC12) that confirmed the involvement of the VRTN gene (as we previously reported) and highlighted additional loci known to affect teat counts, including the FRMD4A and HOXB1 gene regions. A different picture emerged in the Italian Landrace population, with a total of 12 genome regions in eight chromosomes (SSC3, SSC6, SSC8, SSC11, SSC13, SSC14, SSC15, and SSC16) mainly detected via the haplotype-based genome scan. The most relevant QTL was close to the ARL4C gene on SSC15. Markers in the VRTN gene region were not significant in the Italian Landrace breed. The use of both single-marker and haplotype-based genome-wide association analyses can be helpful to exploit and dissect the genome of the pigs of different populations. Overall, the obtained results supported the polygenic nature of the investigated trait and better elucidated its genetic architecture in Italian heavy pigs.


Subject(s)
Genetic Markers , Genome-Wide Association Study/veterinary , Haplotypes , Mammary Glands, Animal/growth & development , Sus scrofa/genetics , Animals , Female
2.
Anim Genet ; 52(2): 155-170, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33544919

ABSTRACT

ROHs are long stretches of DNA homozygous at each polymorphic position. The proportion of genome covered by ROHs and their length are indicators of the level and origin of inbreeding. Frequent common ROHs within the same population define ROH islands and indicate hotspots of selection. In this work, we investigated ROHs in a total of 1131 pigs from 20 European local pig breeds and in three cosmopolitan breeds, genotyped with the GGP Porcine HD Genomic Profiler. plink software was used to identify ROHs. Size classes and genomic inbreeding parameters were evaluated. ROH islands were defined by evaluating different thresholds of homozygous SNP frequency. A functional overview of breed-specific ROH islands was obtained via over-representation analyses of GO biological processes. Mora Romagnola and Turopolje breeds had the largest proportions of genome covered with ROH (~1003 and ~955 Mb respectively), whereas Nero Siciliano and Sarda breeds had the lowest proportions (~207 and 247 Mb respectively). The highest proportion of long ROH (>16 Mb) was in Apulo-Calabrese, Mora Romagnola and Casertana. The largest number of ROH islands was identified in the Italian Landrace (n = 32), Cinta Senese (n = 26) and Lithuanian White Old Type (n = 22) breeds. Several ROH islands were in regions encompassing genes known to affect morphological traits. Comparative ROH structure analysis among breeds indicated the similar genetic structure of local breeds across Europe. This study contributed to understanding of the genetic history of the investigated pig breeds and provided information to manage these pig genetic resources.


Subject(s)
Inbreeding , Sus scrofa/genetics , Animals , Europe , Genome , Genotype , Homozygote , Polymorphism, Single Nucleotide , Population Density
3.
Anim Genet ; 52(3): 365-370, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33609290

ABSTRACT

The gilthead seabream (Sparus aurata, Sparidae family) is commonly used for aquaculture. Despite its great economic value, several problems in its cultivation remain. One of the major concerns is the high frequency of morphological abnormalities occurring during the early developmental stages. Partial and/or total lack of operculum is the most frequent anomaly affecting the fish cranial region. The existence of genetic factors that can at least partially determine this defect has been hypothesized. In this work, two DNA pools of highly related fry, one composed of normal-looking (control) fish and the other lacking an operculum (case), were constructed and whole-genome resequencing data produced from the two were compared. The analysis revealed a 1 Mb region on chromosome 2 with higher heterozygosity in the lack of operculum DNA pool than in the control DNA pool, consistent with the enrichment, in the first DNA pool, of one or more haplotypes causing or predisposing to the defect together with other normal haplotypes. A window-based FST analysis between the two DNA pools indicated that the same region had the highest divergence score. This region contained 2921 SNVs, 10 of which, with predicted high impacts (three splice donor and seven stop-gained variants), were detected in novel genes that are homologous to calcium-sensing receptor-like genes, probably involved in bone development. Other studies are needed to clarify the genetic mechanisms involved in predisposing fry to this deformity and then to identify associated markers that could be used in breeding programs to reduce the frequency of this defect in the broodstock.


Subject(s)
Bone and Bones/abnormalities , Fish Diseases/genetics , Sea Bream/genetics , Animals , Aquaculture , Female , Haplotypes , Male , Polymorphism, Single Nucleotide , Sea Bream/abnormalities , Whole Genome Sequencing/veterinary
4.
Anim Genet ; 52(2): 237-243, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33428230

ABSTRACT

In the European rabbit (Oryctolagus cuniculus), a polytocous livestock species, the number of teats indirectly impacts the doe reproduction efficiency and, in turn, the sustainable production of rabbit meat. In this study, we carried out a genome-wide association study (GWAS) for the total number of teats in 247 Italian White does included in the Italian White rabbit breed selection program, by applying a selective genotyping approach. Does had either 8 (n = 121) or 10 teats (n = 126). All rabbits were genotyped with the Affymetrix Axiom OrcunSNP Array. Genomic data from the two extreme groups of rabbits were also analysed with the single-marker fixation index statistic and combined with the GWAS results. The GWAS identified 50 significant SNPs and the fixation index analysis identified a total of 20 SNPs that trespassed the 99.98th percentile threshold, 19 of which confirmed the GWAS results. The most significant SNP (P = 4.31 × 10-11 ) was located on OCU1, close to the NUDT2 gene, a breast carcinoma cells proliferation promoter. Another significant SNP identified as candidate gene NR6A1, which is well known to play an important role in affecting the correlated number of vertebrae in pigs. Other significant markers were close to candidate genes involved in determining body length in mice. Markers associated with increased number of teats could be included in selection programmes to speed up the improvement for this trait in rabbit lines that need to increase maternal performances.


Subject(s)
Mammary Glands, Animal/anatomy & histology , Rabbits/genetics , Animals , Breeding , Female , Genetic Association Studies/veterinary , Genetic Markers , Genotyping Techniques/veterinary , Phenotype , Polymorphism, Single Nucleotide , Rabbits/anatomy & histology
5.
Anim Genet ; 51(4): 541-556, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32510676

ABSTRACT

In this study, we identified copy number variants (CNVs) in 19 European autochthonous pig breeds and in two commercial breeds (Italian Large White and Italian Duroc) that represent important genetic resources for this species. The genome of 725 pigs was sequenced using a breed-specific DNA pooling approach (30-35 animals per pool) obtaining an average depth per pool of 42×. This approach maximised CNV discovery as well as the related copy number states characterising, on average, the analysed breeds. By mining more than 17.5 billion reads, we identified a total of 9592 CNVs (~683 CNVs per breed) and 3710 CNV regions (CNVRs; 1.15% of the reference pig genome), with an average of 77 CNVRs per breed that were considered as private. A few CNVRs were analysed in more detail, together with other information derived from sequencing data. For example, the CNVR encompassing the KIT gene was associated with coat colour phenotypes in the analysed breeds, confirming the role of the multiple copies in determining breed-specific coat colours. The CNVR covering the MSRB3 gene was associated with ear size in most breeds. The CNVRs affecting the ELOVL6 and ZNF622 genes were private features observed in the Lithuanian Indigenous Wattle and in the Turopolje pig breeds respectively. Overall, the genome variability unravelled here can explain part of the genetic diversity among breeds and might contribute to explain their origin, history and adaptation to a variety of production systems.


Subject(s)
DNA Copy Number Variations , DNA/genetics , Sus scrofa/genetics , Animals , Breeding , Female , Italy , Male , Phenotype , Species Specificity , Whole Genome Sequencing/veterinary
6.
Anim Genet ; 51(2): 319-323, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31900984

ABSTRACT

The gilthead seabream (Sparus aurata) is an important cultivated species in the Mediterranean area. A major problem for the gilthead seabream aquaculture sector derives from the high frequency of phenotypic abnormalities, including discolorations. In this study, we applied a whole-genome resequencing approach to identify a genomic region affecting a pigmentation defect that occurred in a cultivated S. aurata population. Two equimolar DNA pools were constructed using DNA extracted from 30 normally coloured and 21 non-pigmented fish collected among the offspring of the same broodstock nucleus. Whole-genome resequencing reads from the two DNA pools were aligned to the S. aurata draft genome and variant calling was performed. A whole-genome heterozygosity scan from single pool sequencing data highlighted a peak of reduced heterozygosity of approximately 5 Mbp on chromosome 6 in the non-pigmented pool that was not present in the normally coloured pool. The comparison of the non-pigmented with the normally coloured fish using a whole-genome FST analysis detected three main regions within the coordinates previously detected with the heterozygosity analysis. The results support the presence of a major locus affecting this discoloration defect in this fish population. The results of this study have practical applications, including the possibility of eliminating this defect from the breeding stock, with direct economic advantages derived from the reduction of discarded fry. Other studies are needed to identify the candidate gene and the causative mutation, which could add information to understand the complex biology of fish pigmentation.


Subject(s)
Pigmentation/genetics , Sea Bream/physiology , Whole Genome Sequencing/veterinary , Animals , Aquaculture , Sea Bream/genetics
7.
Sci Rep ; 9(1): 13546, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537860

ABSTRACT

Genetic characterization of local breeds is essential to preserve their genomic variability, to advance conservation policies and to contribute to their promotion and sustainability. Genomic diversity of twenty European local pig breeds and a small sample of Spanish wild pigs was assessed using high density SNP chips. A total of 992 DNA samples were analyzed with the GeneSeek Genomic Profiler (GGP) 70 K HD porcine genotyping chip. Genotype data was employed to compute genetic diversity, population differentiation and structure, genetic distances, linkage disequilibrium and effective population size. Our results point out several breeds, such as Turopolje, Apulo Calabrese, Casertana, Mora Romagnola and Lithuanian indigenous wattle, having the lowest genetic diversity, supported by low heterozygosity and very small effective population size, demonstrating the need of enhanced conservation strategies. Principal components analysis showed the clustering of the individuals of the same breed, with few breeds being clearly isolated from the rest. Several breeds were partially overlapped, suggesting genetic closeness, which was particularly marked in the case of Iberian and Alentejana breeds. Spanish wild boar was also narrowly related to other western populations, in agreement with recurrent admixture between wild and domestic animals. We also searched across the genome for loci under diversifying selection based on FST outlier tests. Candidate genes that may underlie differences in adaptation to specific environments and productive systems and phenotypic traits were detected in potentially selected genomic regions.


Subject(s)
Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Swine/genetics , Animals , Animals, Domestic/genetics , Breeding/methods , Genetic Variation/genetics , Genetics, Population/methods , Genome , Genomics/methods , Genotype , Oligonucleotide Array Sequence Analysis/methods , Phenotype , Population Density , Principal Component Analysis/methods
8.
Anim Genet ; 50(2): 166-171, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30741434

ABSTRACT

Autochthonous pig breeds are usually reared in extensive or semi-extensive production systems that might facilitate contact with wild boars and, thus, reciprocal genetic exchanges. In this study, we analysed variants in the melanocortin 1 receptor (MC1R) gene (which cause different coat colour phenotypes) and in the nuclear receptor subfamily 6 group A member 1 (NR6A1) gene (associated with increased vertebral number) in 712 pigs of 12 local pig breeds raised in Italy (Apulo-Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano and Sarda) and south-eastern European countries (Krskopolje from Slovenia, Black Slavonian and Turopolje from Croatia, Mangalitsa and Moravka from Serbia and East Balkan Swine from Bulgaria) and compared the data with the genetic variability at these loci investigated in 229 wild boars from populations spread in the same macro-geographic areas. None of the autochthonous pig breeds or wild boar populations were fixed for one allele at both loci. Domestic and wild-type alleles at these two genes were present in both domestic and wild populations. Findings of the distribution of MC1R alleles might be useful for tracing back the complex genetic history of autochthonous breeds. Altogether, these results indirectly demonstrate that bidirectional introgression of wild and domestic alleles is derived and affected by the human and naturally driven evolutionary forces that are shaping the Sus scrofa genome: autochthonous breeds are experiencing a sort of 'de-domestication' process, and wild resources are challenged by a 'domestication' drift. Both need to be further investigated and managed.


Subject(s)
Domestication , Nuclear Receptor Subfamily 6, Group A, Member 1/genetics , Receptor, Melanocortin, Type 1/genetics , Sus scrofa/genetics , Alleles , Animals , Breeding , Europe, Eastern , Italy , Nuclear Receptor Subfamily 6, Group A, Member 1/metabolism , Receptor, Melanocortin, Type 1/metabolism
9.
Anim Genet ; 49(4): 321-325, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29672877

ABSTRACT

Casertana is an endangered autochthonous pig breed (raised in south-central Italy) that is considered to be the descendant of the influential Neapolitan pig population that was used to improve British breeds in the 19th century. Casertana pigs are characterized by a typical, almost complete, hairless phenotype, even though a few Casertana pigs are normal haired. In this work, using Illumina PorcineSNP60 BeadChip data, we carried out a genome-wide association study and an FST analysis with this breed by comparing animals showing the classical hairless phenotype (n = 81) versus pigs classified as haired (n = 15). Combining the results obtained with the two approaches, we identified two significant regions: one on porcine chromosome (SSC) 7 and one on SSC15. The SSC7 region contains the forkhead box N3 (FOXN3) gene, the most plausible candidate gene of this region, considering that mutations in another gene of the same family (forkhead box N1; Foxn1 or FOXN1) are responsible for the nude locus in rodents and alopecia in humans. Another potential candidate gene, rho guanine nucleotide exchange factor 10 (ARHGEF10), is located in the SSC15 region. FOXN3 and ARHGEF10 have been detected as differentially expressed in androgenetic and senescent alopecia respectively. This study on an autochthonous pig breed contributes to shed some light on novel genes potentially involved in hair development and growth and demonstrates that local animal breeds can be valuable genetic resources for disclosing genetic factors affecting unique traits, taking advantage of phenotype variability segregating in small populations.


Subject(s)
Breeding , Phenotype , Sus scrofa/genetics , Animals , Female , Forkhead Transcription Factors/genetics , Genetic Association Studies/veterinary , Hair , Italy , Male , Polymorphism, Single Nucleotide , Rho Guanine Nucleotide Exchange Factors/genetics
10.
Anim Genet ; 48(1): 97-102, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27435880

ABSTRACT

Taste perception in animals affects feed intake and may influence production traits. In particular, bitter is sensed by receptors encoded by the family of TAS2R genes. In this research, using a DNA pool-seq approach coupled with next generation semiconductor based target resequencing, we analysed nine porcine TAS2R genes (TAS2R1, TAS2R3, TAS2R4, TAS2R7, TAS2R9, TAS2R10, TAS2R16, TAS2R38 and TAS2R39) to identify variability and, at the same time, estimate single nucleotide polymorphism (SNP) allele frequencies in several populations and testing differences in an association analysis. Equimolar DNA pools were prepared for five pig breeds (Italian Duroc, Italian Landrace, Pietrain, Meishan and Casertana) and wild boars (5-10 individuals each) and for two groups of Italian Large White pigs with extreme and divergent back fat thickness (50 + 50 pigs). About 1.8 million reads were obtained by sequencing amplicons generated from these pools. A total of 125 SNPs were identified, of which 37 were missense mutations. Three of them (p.Ile53Phe and p.Trp85Leu in TAS2R4; p.Leu37Ser in TAS2R39) could have important effects on the function of these bitter taste receptors, based on in silico predictions. Variability in wild boars seems lower than that in domestic breeds potentially as a result of selective pressure in the wild towards defensive bitter taste perception. Three SNPs in TAS2R38 and TAS2R39 were significantly associated with back fat thickness. These results may be important to understand the complexity of taste perception and their associated effects that could be useful to develop nutrigenetic approaches in pig breeding and nutrition.


Subject(s)
Polymorphism, Single Nucleotide , Receptors, G-Protein-Coupled/genetics , Sequence Analysis, DNA/methods , Sus scrofa/genetics , Taste/genetics , Animals , Breeding , Gene Frequency , Semiconductors
11.
Anim Genet ; 47(1): 120-4, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26763160

ABSTRACT

A feral donkey population (Equus asinus), living in the Asinara National Park (an island north-west of Sardinia, Italy), includes a unique white albino donkey subpopulation or colour morph that is a major attraction of this park. Disrupting mutations in the tyrosinase (TYR) gene are known to cause recessive albinisms in humans (oculocutaneous albinism Type 1; OCA1) and other species. In this study, we analysed the donkey TYR gene as a strong candidate to identify the causative mutation of the albinism of these donkeys. The TYR gene was sequenced from 13 donkeys (seven Asinara white albino and six coloured animals). Seven single nucleotide polymorphisms were identified. A missense mutation (c.604C>G; p.His202Asp) in a highly conserved amino acid position (even across kingdoms), which disrupts the first copper-binding site (CuA) of functional protein, was identified in the homozygous condition (G/G or D/D) in all Asinara white albino donkeys and in the albino son of a trio (the grey parents had genotype C/G or H/D), supporting the recessive mode of inheritance of this mutation. Genotyping 82 donkeys confirmed that Asinara albino donkeys had genotype G/G whereas all other coloured donkeys had genotype C/C or C/G. Across-population association between the c.604C>G genotypes and the albino coat colour was highly significant (P = 6.17E-18). The identification of the causative mutation of the albinism in the Asinara white donkeys might open new perspectives to study the dynamics of this putative deleterious allele in a feral population and to manage this interesting animal genetic resource.


Subject(s)
Albinism/genetics , Equidae/genetics , Monophenol Monooxygenase/genetics , Mutation, Missense , Animals , Breeding , Genes, Recessive , Genotype , Italy , Molecular Sequence Data , Phenotype , Polymorphism, Single Nucleotide
12.
Meat Sci ; 98(4): 781-4, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25134014

ABSTRACT

Wild boar meat cannot be easily distinguished from domestic pig meat, especially in processed products, thus it can be fraudulently substituted with cheaper domestic pork. In this study we genotyped polymorphisms in two genes (MC1R, affecting coat color and NR6A1, associated with number of vertebrae) in 293 domestic pigs of five commercial breeds, 111 wild boars sampled in Italy, and 90 in Slovenia and other Western Balkan regions. Allele and genotype frequency data were used to set up a DNA-based method to distinguish meat of wild boars and domestic pigs. Genotyping results indicated that domesticated genes were introgressed into wild boar populations. This complicated the determination of the origin of the meat and would cause a high error rate if markers of only one gene were used. The combined use of polymorphisms in the two analyzed genes substantially reduced false negative results.


Subject(s)
Meat , Nuclear Receptor Subfamily 6, Group A, Member 1/genetics , Polymorphism, Genetic/genetics , Receptor, Melanocortin, Type 1/genetics , Animals , Female , Genetic Markers/genetics , Male , Polymerase Chain Reaction , Sequence Analysis, DNA , Sus scrofa , Swine
13.
Anim Genet ; 45(4): 600-3, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24814776

ABSTRACT

Classical genetic studies in European rabbits (Oryctolagus cuniculus) suggested the presence of two alleles at the brown coat colour locus: a wild-type B allele that gives dense black pigment throughout the coat and a recessive b allele that in the homozygous condition (b/b genotype) produces brown rabbits that are unable to develop black pigmentation. In several other species, this locus is determined by mutations in the tyrosinase-related protein 1 (TYRP1) gene, encoding a melanocyte enzyme needed for the production of dark eumelanin. In this study, we investigated the rabbit TYRP1 gene as a strong candidate for the rabbit brown coat colour locus. A total of 3846 bp of the TYRP1 gene were sequenced in eight rabbits of different breeds and identified 23 single nucleotide polymorphisms (SNPs; 12 in intronic regions, five in exons and six in the 3'-untranslated region) and an insertion/deletion of 13 bp, in the 3'-untranslated region, organised in a few haplotypes. A mutation in exon 2 (g.41360196G>A) leads to a premature stop codon at position 190 of the deduced amino acid sequence (p.Trp190ter). Therefore, translation predicts a truncated TYRP1 protein lacking almost completely the tyrosinase domain. Genotyping 203 rabbits of 32 different breeds identified this mutation only in brown Havana rabbits. Its potential functional relevance in disrupting the TYRP1 protein and its presence only in brown animals strongly argue for this non-sense mutation being a causative mutation for the recessive b allele at the brown locus in Oryctolagus cuniculus.


Subject(s)
Oxidoreductases/genetics , Pigmentation , Rabbits/physiology , Amino Acid Sequence , Animals , Base Sequence , Codon, Nonsense/chemistry , Codon, Nonsense/genetics , Codon, Nonsense/metabolism , Codon, Terminator/chemistry , Codon, Terminator/genetics , Codon, Terminator/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Polymerase Chain Reaction/veterinary , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , Rabbits/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...