Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38117290

ABSTRACT

Parapoxviruses (PPV) cause skin and mucous membrane lesions in several animal species, and of the five recognized PPVs, at least three are zoonotic. Equine PPV (EqPPV) is the sixth one initially described in humans in the United States and later in a severely sick horse in Finland in 2013-2015. In 2021-2022, a large-scale pustulo-vesicular pastern dermatitis outbreak occurred in horses all over Finland. This study aimed at analysing the outbreak, identifying and describing the causative agent, describing clinical signs, and searching for risk factors. EqPPV was identified as a probable causative agent and co-infections with several potentially pathogenic and zoonotic bacteria were observed. Histopathologically, suppurative and ulcerative dermatitis was diagnosed. Due to the lack of specific tests for this virus, we developed a novel diagnostic EqPPV-PCR with sensitivity of 10 copies/reaction. Based on a large proportion of the genome sequenced directly from clinical samples, very little variation was detected between the sequences of the case from 2013 and the cases from 2021 to 2022. Based on an epidemiological survey, the main risk factor for pastern dermatitis was having racehorses. Approximately one third of the horses at each affected stable got clinical dermatitis, manifesting as severe skin lesions. Skin lesions were also occasionally reported in humans, indicating potential zoonotic transmission. Case stables commonly reported attendance at race events before acquiring the disease. Survey also identified differences in practises between case and control stables. Taken together, these results enable a better preparedness, diagnostics, and guidelines for future outbreaks.


Subject(s)
Coinfection , Dermatitis , Parapoxvirus , Humans , Animals , Horses , Disease Outbreaks , Skin , Coinfection/epidemiology , Coinfection/veterinary , Dermatitis/epidemiology , Dermatitis/veterinary , Parapoxvirus/genetics
2.
Parasit Vectors ; 16(1): 327, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37704990

ABSTRACT

BACKGROUND: Ticks carry microbes, some of which are pathogenic for humans and animals. To assess this One Health challenge, 342 ticks were collected from pet dogs and cats at 10 veterinary clinics in Finland as part of the European project "Protect Our Future Too". METHODS: The tick species were identified, and ticks were screened with quantitative PCR (qPCR) for tick-borne pathogens, including Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Ehrlichia canis, Anaplasma spp., Candidatus Neoehrlichia mikurensis, tick-borne encephalitis virus (TBEV), and Babesia spp. For comparison, a subset of tick DNA (20 qPCR-positive samples) was analysed with 16S next-generation sequencing (NGS). RESULTS: Most ticks were Ixodes ricinus (289, 84.5%), followed by Ixodes persulcatus (51, 14.9%). One hybrid tick (I. ricinus/I. persulcatus, 0.3%) and one Rhipicephalus sanguineus tick (0.3%) were identified. We found one or more of the analysed pathogens in 17% (59/342) of the ticks. The most prevalent pathogen was B. burgdorferi s.l. (36, 10.5%), followed by Anaplasma phagocytophilum (12, 3.5%), B. miyamotoi (5, 1.5%), Babesia venatorum (4, 1.2%), and TBEV (1, 0.3%). Candidatus Neoehrlichia mikurensis DNA was amplified from three (0.9%) ticks. Ehrlichia canis was not detected. In the 16S NGS, six samples produced enough reads for the analysis. In these six samples, we confirmed all the positive qPCR findings of Borrelia spp. and Ca. N. mikurensis. CONCLUSIONS: The high prevalence of pathogenic microorganisms in the ticks of this study emphasizes the importance of awareness of ticks and tick-borne diseases and prevention. Furthermore, the results show that veterinary surveillance can facilitate early detection of tick-borne pathogens and new tick species and draw attention to possible co-infections that should be considered both in symptomatic humans and animals after tick bites.


Subject(s)
Anaplasmataceae , Babesia , Cat Diseases , Dog Diseases , Encephalitis Viruses, Tick-Borne , Ixodes , Humans , Cats , Dogs , Animals , Finland/epidemiology , Cat Diseases/epidemiology , Hospitals, Animal , Dog Diseases/epidemiology , Babesia/genetics , Ehrlichia canis
3.
Viruses ; 15(3)2023 02 21.
Article in English | MEDLINE | ID: mdl-36992301

ABSTRACT

The West Nile Virus (WNV) and Sindbis virus (SINV) are avian-hosted mosquito-borne zoonotic viruses that co-circulate in some geographical areas and share vector species such as Culex pipiens and Culex torrentium. These are widespread in Europe, including northern parts and Finland, where SINV is endemic, but WNV is currently not. As WNV is spreading northwards in Europe, we wanted to assess the experimental vector competence of Finnish Culex pipiens and Culex torrentium mosquitoes to WNV and SINV in different temperature profiles. Both mosquito species were found susceptible to both viruses and got infected via infectious blood meal at a mean temperature of 18 °C. WNV-positive saliva was detected at a mean temperature of 24 °C, whereas SINV-positive saliva was detected already at a mean temperature of 18 °C. Cx. torrentium was found to be a more efficient vector for WNV and SINV over Cx. pipiens. Overall, the results were in line with the previous studies performed with more southern vector populations. The current climate does not seem optimal for WNV circulation in Finland, but temporary summertime transmission could occur in the future if all other essential factors are in place. More field data would be needed for monitoring and understanding the northward spreading of WNV in Europe.


Subject(s)
Culex , West Nile Fever , West Nile virus , Animals , Sindbis Virus , Mosquito Vectors , Europe/epidemiology
4.
Pathog Immun ; 8(2): 74-87, 2023.
Article in English | MEDLINE | ID: mdl-38347963

ABSTRACT

Background: Lymphopenia is common in COVID-19. This has raised concerns that COVID-19 could affect the immune system akin to measles infection, which causes immune amnesia and a reduction in protective antibodies. Methods: We recruited COVID-19 patients (n = 59) in Helsinki, Finland, and collected plasma samples on 2 to 3 occasions during and after infection. We measured IgG antibodies to diphtheria toxin, tetanus toxoid, and pertussis toxin, along with total IgG, SARS-CoV-2 spike protein IgG, and neutralizing antibodies. We also surveyed the participants for up to 17 months for long-term impaired olfaction as a proxy for prolonged post-acute COVID-19 symptoms. Results: No significant differences were found in the unrelated vaccine responses while the serological response against COVID-19 was appropriate. During the acute phase of the disease, the SARSCoV-2 IgG levels were lower in outpatients when compared to inpatients. SARS-CoV-2 serology kinetics matched expectations. In the acute phase, anti-tetanus and anti-diphtheria IgG levels were lower in patients with prolonged impaired olfaction during follow up than in those without. Conclusions: We could not detect significant decline in overall humoral immunity during or after COVID-19 infection. In severe COVID-19, there appears to be a temporary decline in total IgG levels.

5.
Parasit Vectors ; 15(1): 310, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36042518

ABSTRACT

BACKGROUND: Ticks are responsible for transmitting several notable pathogens worldwide. Finland lies in a zone where two human-biting tick species co-occur: Ixodes ricinus and Ixodes persulcatus. Tick densities have increased in boreal regions worldwide during past decades, and tick-borne pathogens have been identified as one of the major threats to public health in the face of climate change. METHODS: We used species distribution modelling techniques to predict the distributions of I. ricinus and I. persulcatus, using aggregated historical data from 2014 to 2020 and new tick occurrence data from 2021. By aiming to fill the gaps in tick occurrence data, we created a new sampling strategy across Finland. We also screened for tick-borne encephalitis virus (TBEV) and Borrelia from the newly collected ticks. Climate, land use and vegetation data, and population densities of the tick hosts were used in various combinations on four data sets to estimate tick species' distributions across mainland Finland with a 1-km resolution. RESULTS: In the 2021 survey, 89 new locations were sampled of which 25 new presences and 63 absences were found for I. ricinus and one new presence and 88 absences for I. persulcatus. A total of 502 ticks were collected and analysed; no ticks were positive for TBEV, while 56 (47%) of the 120 pools, including adult, nymph, and larva pools, were positive for Borrelia (minimum infection rate 11.2%, respectively). Our prediction results demonstrate that two combined predictor data sets based on ensemble mean models yielded the highest predictive accuracy for both I. ricinus (AUC = 0.91, 0.94) and I. persulcatus (AUC = 0.93, 0.96). The suitable habitats for I. ricinus were determined by higher relative humidity, air temperature, precipitation sum, and middle-infrared reflectance levels and higher densities of white-tailed deer, European hare, and red fox. For I. persulcatus, locations with greater precipitation and air temperature and higher white-tailed deer, roe deer, and mountain hare densities were associated with higher occurrence probabilities. Suitable habitats for I. ricinus ranged from southern Finland up to Central Ostrobothnia and North Karelia, excluding areas in Ostrobothnia and Pirkanmaa. For I. persulcatus, suitable areas were located along the western coast from Ostrobothnia to southern Lapland, in North Karelia, North Savo, Kainuu, and areas in Pirkanmaa and Päijät-Häme. CONCLUSIONS: This is the first study conducted in Finland that estimates potential tick species distributions using environmental and host data. Our results can be utilized in vector control strategies, as supporting material in recommendations issued by public health authorities, and as predictor data for modelling the risk for tick-borne diseases.


Subject(s)
Borrelia , Deer , Encephalitis Viruses, Tick-Borne , Hares , Ixodes , Animals , Borrelia/genetics , Ecosystem , Finland/epidemiology , Humans
6.
Euro Surveill ; 27(31)2022 08.
Article in English | MEDLINE | ID: mdl-35929430

ABSTRACT

Sindbis virus (SINV) caused a large outbreak in Finland in 2021 with 566 laboratory-confirmed human cases and a notable geographical expansion. Compared with the last large outbreak in 2002, incidence was higher in several hospital districts but lower in traditionally endemic locations in eastern parts of the country. A high incidence is also expected in 2022. Awareness of SINV should be raised in Finland to increase recognition of the disease and prevent transmission through the promotion of control measures.


Subject(s)
Alphavirus Infections , Sindbis Virus , Alphavirus Infections/diagnosis , Alphavirus Infections/epidemiology , Disease Outbreaks , Finland/epidemiology , Geography , Humans
7.
Viruses ; 14(7)2022 07 07.
Article in English | MEDLINE | ID: mdl-35891469

ABSTRACT

RNA viromes of nine commonly encountered Ochlerotatus mosquito species collected around Finland in 2015 and 2017 were studied using next-generation sequencing. Mosquito homogenates were sequenced from 91 pools comprising 16-60 morphologically identified adult females of Oc. cantans, Oc. caspius, Oc. communis, Oc. diantaeus, Oc. excrucians, Oc. hexodontus, Oc. intrudens, Oc. pullatus and Oc. punctor/punctodes. In total 514 viral Reverse dependent RNA polymerase (RdRp) sequences of 159 virus species were recovered, belonging to 25 families or equivalent rank, as follows: Aliusviridae, Aspiviridae, Botybirnavirus, Chrysoviridae, Chuviridae, Endornaviridae, Flaviviridae, Iflaviridae, Negevirus, Partitiviridae, Permutotetraviridae, Phasmaviridae, Phenuiviridae, Picornaviridae, Qinviridae, Quenyavirus, Rhabdoviridae, Sedoreoviridae, Solemoviridae, Spinareoviridae, Togaviridae, Totiviridae, Virgaviridae, Xinmoviridae and Yueviridae. Of these, 147 are tentatively novel viruses. One sequence of Sindbis virus, which causes Pogosta disease in humans, was detected from Oc. communis from Pohjois-Karjala. This study greatly increases the number of mosquito-associated viruses known from Finland and presents the northern-most mosquito-associated viruses in Europe to date.


Subject(s)
Culicidae , Ochlerotatus , Animals , Female , Finland , Humans , RNA, Viral/genetics , Virome
8.
Spat Spatiotemporal Epidemiol ; 41: 100493, 2022 06.
Article in English | MEDLINE | ID: mdl-35691637

ABSTRACT

This study aims to elucidate the variations in spatiotemporal patterns and sociodemographic determinants of SARS-CoV-2 infections in Helsinki, Finland. Global and local spatial autocorrelation were inspected with Moran's I and LISA statistics, and Getis-Ord Gi* statistics was used to identify the hot spot areas. Space-time statistics were used to detect clusters of high relative risk and regression models were implemented to explain sociodemographic determinants for the clusters. The findings revealed the presence of spatial autocorrelation and clustering of COVID-19 cases. High-high clusters and high relative risk areas emerged primarily in Helsinki's eastern neighborhoods, which are socioeconomically vulnerable, with a few exceptions revealing local outbreaks in other areas. The variation in COVID-19 rates was largely explained by median income and the number of foreign citizens in the population. Furthermore, the use of multiple spatiotemporal analysis methods are recommended to gain deeper insights into the complex spatiotemporal clustering patterns and sociodemographic determinants of the COVID-19 cases.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Cluster Analysis , Finland/epidemiology , Humans , Spatial Analysis , Spatio-Temporal Analysis
9.
Viruses ; 14(6)2022 06 13.
Article in English | MEDLINE | ID: mdl-35746757

ABSTRACT

Several alphaviruses, such as chikungunya (CHIKV) and Onyong-nyong (ONNV), are endemic in Kenya and often cause outbreaks in different parts of the country. We assessed the seroprevalence of alphaviruses in patients with acute febrile illness in two geographically distant areas in Kenya with no previous record of alphavirus outbreaks. Blood samples were collected from febrile patients in health facilities located in the rural Taita-Taveta County in 2016 and urban Kibera informal settlement in Nairobi in 2017 and tested for CHIKV IgG and IgM antibodies using an in-house immunofluorescence assay (IFA) and a commercial ELISA test, respectively. A subset of CHIKV IgG or IgM antibody-positive samples were further analyzed using plaque reduction neutralization tests (PRNT) for CHIKV, ONNV, and Sindbis virus. Out of 537 patients, 4 (0.7%) and 28 (5.2%) had alphavirus IgM and IgG antibodies, respectively, confirmed on PRNT. We show evidence of previous and current exposure to alphaviruses based on serological testing in areas with no recorded history of outbreaks.


Subject(s)
Chikungunya Fever , Chikungunya virus , Antibodies, Viral , Fever , Humans , Immunoglobulin G , Immunoglobulin M , Kenya/epidemiology , Seroepidemiologic Studies
10.
Vector Borne Zoonotic Dis ; 21(12): 973-978, 2021 12.
Article in English | MEDLINE | ID: mdl-34958268

ABSTRACT

Rodents are known reservoir hosts for a number of pathogens that can spillover into humans and cause disease. These threats are likely to be elevated in informal urban settlements (i.e., slums), where rodent and human densities are often high, rodents live in close proximity to humans, and human knowledge of disease risks and access to health care is often limited. While recent research attention has focused on zoonotic risks posed by urban rodents in major cities around the world, informal urban settlements have received far less attention. Here we report on a study in which samples were collected from 195 commensal rodents and 124 febrile human patients in the Kibera informal settlement in Nairobi, Kenya (one of the largest informal urban settlements in the world). Using immunofluorescence assays, samples were screened for antibodies against common rodent-borne zoonotic virus groups, namely orthopoxviruses, arenaviruses, and hantaviruses. We detected antibodies against orthopoxviruses in rodents (4.1% positive) and antibodies in humans against orthopoxviruses, arenaviruses, and hantaviruses (4.8%, 3.2%, and 8.1% positive, respectively). No rodents had antibodies against arenaviruses or hantaviruses. These results provide strong evidence for the circulation of zoonotic viruses in rodents and humans in Kibera urban settlement, but discordance between viruses detected in host groups indicates that other species or taxa may also serve as reservoirs for these zoonotic viruses or that humans testing positive could have been exposed outside of the Kibera settlement. More broadly, this study highlights the threat posed by zoonotic viruses in informal urban settlements and the need to mitigate human exposure risks.


Subject(s)
Orthohantavirus , Viruses , Animals , Humans , Kenya/epidemiology , Poverty Areas , Rodentia
11.
Article in English | MEDLINE | ID: mdl-34281003

ABSTRACT

Pogosta disease is a mosquito-borne infection, caused by Sindbis virus (SINV), which causes epidemics of febrile rash and arthritis in Northern Europe and South Africa. Resident grouse and migratory birds play a significant role as amplifying hosts and various mosquito species, including Aedes cinereus, Culex pipiens, Cx. torrentium and Culiseta morsitans are documented vectors. As specific treatments are not available for SINV infections, and joint symptoms may persist, the public health burden is considerable in endemic areas. To predict the environmental suitability for SINV infections in Finland, we applied a suite of geospatial and statistical modeling techniques to disease occurrence data. Using an ensemble approach, we first produced environmental suitability maps for potential SINV vectors in Finland. These suitability maps were then combined with grouse densities and environmental data to identify the influential determinants for SINV infections and to predict the risk of Pogosta disease in Finnish municipalities. Our predictions suggest that both the environmental suitability for vectors and the high risk of Pogosta disease are focused in geographically restricted areas. This provides evidence that the presence of both SINV vector species and grouse densities can predict the occurrence of the disease. The results support material for public-health officials when determining area-specific recommendations and deliver information to health care personnel to raise awareness of the disease among physicians.


Subject(s)
Aedes , Alphavirus Infections , Alphavirus Infections/epidemiology , Animals , Europe , Finland/epidemiology , Mosquito Vectors , Sindbis Virus , South Africa
12.
Viruses ; 13(6)2021 05 26.
Article in English | MEDLINE | ID: mdl-34073577

ABSTRACT

Increasing evidence suggests that some newly emerged SARS-CoV-2 variants of concern (VoCs) resist neutralization by antibodies elicited by the early-pandemic wild-type virus. We applied neutralization tests to paired recoveree sera (n = 38) using clinical isolates representing the first wave (D614G), VoC1, and VoC2 lineages (B.1.1.7 and B 1.351). Neutralizing antibodies inhibited contemporary and VoC1 lineages, whereas inhibition of VoC2 was reduced 8-fold, with 50% of sera failing to show neutralization. These results provide evidence for the increased potential of VoC2 to reinfect previously SARS-CoV-infected individuals. The kinetics of NAbs in different patients showed similar decline against all variants, with generally low initial anti-B.1.351 responses becoming undetectable, but with anti-B.1.1.7 NAbs remaining detectable (>20) for months after acute infection.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/virology , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoglobulin G/immunology , Kinetics , Neutralization Tests , Phosphoproteins/immunology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
13.
Ticks Tick Borne Dis ; 12(2): 101608, 2021 03.
Article in English | MEDLINE | ID: mdl-33249364

ABSTRACT

Borrelia miyamotoi is an emerging pathogen that shares high similarity with relapsing fever Borrelia, but has an atypical clinical presentation. Within the framework of tick-borne disease surveillance in Finland, human serum samples suspected for tick-borne encephalitis (n=974) and questing ticks (n=739) were collected from the capital region in Finland to determine the prevalence of B. miyamotoi. All tested human samples were negative and 5 (0.68 %) Ixodes ricinus ticks were positive for B. miyamotoi. Partial sequencing of the flagellin (flaB) gene of 3 positive samples and 27 B. miyamotoi-positive tick samples obtained from previous studies across Finland were amplified, sequenced, and included in the phylogenetic analysis. The phylogenetic tree revealed that most B. miyamotoi strains isolated from ticks in Finland share high similarity with other European strains, including strains related to human infection. Possible disease transmission may occur during exposure to tick bites. A single strain collected from an I. persulcatus tick in Pajujärvi grouped with an outlier of B. miyamotoi strains isolated from Russia and Far East Asian countries. Further studies should investigate the pathogen's role in human infection in Finland. Another important finding is the occurrence of I. persulcatus ticks (8%) collected by crowdsourcing from the coastal southern part of Finland. This suggests a regular introduction and a possible wide expansion of this tick species in the country. This could be associated with transmission of new pathogens.


Subject(s)
Borrelia/isolation & purification , Ixodes/microbiology , Phylogeny , Animals , Borrelia/classification , Borrelia/genetics , Female , Finland
14.
Travel Med Infect Dis ; 39: 101949, 2021.
Article in English | MEDLINE | ID: mdl-33321195

ABSTRACT

BACKGROUND: Exposure, risks and immunity of healthcare workers (HCWs), a vital resource during the SARS-CoV-2 pandemic, warrant special attention. METHODS: HCWs at Helsinki University Hospital, Finland, filled in questionnaires and provided serum samples for SARS-CoV-2-specific antibody screening by Euroimmun IgG assay in March-April 2020. Positive/equivocal findings were confirmed by Abbott and microneutralization tests. Positivity by two of the three assays or RT-PCR indicated a Covid-19 case (CoV+). RESULTS: The rate of CoV(+) was 3.3% (36/1095) and seropositivity 3.0% (33/1095). CoV(+) was associated with contact with a known Covid-19 case, and working on a Covid-19-dedicated ward or one with cases among staff. The rate in the Covid-19-dedicated ICU was negligible. Smoking and age <55 years were associated with decreased risk. CoV(+) was strongly associated with ageusia, anosmia, myalgia, fatigue, fever, and chest pressure. Seropositivity was recorded for 89.3% of those with prior documented RT-PCR-positivity and 2.4% of those RT-PCR-negative. The rate of previously unidentified cases was 0.7% (8/1067) and asymptomatic ones 0% (0/36). CONCLUSION: Undiagnosed and asymptomatic cases among HCWs proved rare. An increased risk was associated with Covid-19-dedicated wards. Particularly high rates were seen for wards with liberal HCW-HCW contacts, highlighting the importance of social distancing also among HCWs.


Subject(s)
COVID-19/epidemiology , Health Personnel/statistics & numerical data , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , Asymptomatic Infections/epidemiology , COVID-19/diagnosis , COVID-19/pathology , COVID-19/prevention & control , Female , Finland/epidemiology , Hospitals, University , Humans , Male , Middle Aged , Risk Factors , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies
15.
Emerg Infect Dis ; 26(12): 2899-2906, 2020 12.
Article in English | MEDLINE | ID: mdl-33219653

ABSTRACT

Tick-borne encephalitis (TBE) is an endemic infection of public health importance in Finland. We investigated the effect of ecologic factors on 2007-2017 TBE trends. We obtained domestic TBE case data from the National Infectious Diseases Register, weather data from the US National Oceanic and Atmospheric Administration, and data from the Natural Resources Institute in Finland on mammals killed by hunters yearly in game management areas. We performed a mixed-effects time-series analysis with time lags on weather and animal parameters, adding a random effect to game management areas. During 2007-2017, a total of 395/460 (86%) domestic TBE cases were reported with known place of exposure and date of sampling. Overall, TBE incidence increased yearly by 15%. After adjusting for the density of other animals and minimum temperatures, we found thatTBE incidence was positively associated with white-tailed deer density. Variation in host animal density should be considered when assessing TBE risks and designing interventions.


Subject(s)
Deer , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Ixodes , Animals , Encephalitis, Tick-Borne/epidemiology , Finland/epidemiology , Population Density
16.
Arch Virol ; 165(12): 2989-2992, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32951134

ABSTRACT

Negeviruses are insect-specific enveloped RNA viruses that have been detected in mosquitoes and sandflies from various geographical locations. Here, we describe a new negevirus from Northern Europe, isolated from pool of Aedes vexans mosquitoes collected in Finland, designated as Mekrijärvi negevirus (MEJNV). MEJNV had a typical negevirus genome organization, is 9,740 nucleotides in length, and has a GC content of 47.53%. The MEJNV genome contains three ORFs, each containing the following identified conserved domains: ORF1 (7,068 nt) encodes a viral methyltransferase, an FtsJ-like methyltransferase, a viral RNA helicase, and an RNA-dependent RNA polymerase, ORF2 (1,242 nt) encodes a putative virion glycoprotein, and ORF3 (660 nt) encodes a putative virion membrane protein. A distinctive feature relative to other currently known negeviruses is a 7-nucleotide-long overlap between ORF1 and ORF2. MEJNV shares the highest sequence identity with Ying Kou virus from China, with 67.71% nucleotide and 75.19% and 59.00% amino acid sequence identity in ORF 1 and ORF 2, respectively. ORF3 had the highest amino acid sequence similarity to Daeseongdong virus 1 and negevirus Nona 1, both with 77.61% identity, and to Ying Kou virus, with 71.22% identity. MEJNV is currently the northernmost negevirus described. Our report supports the view that negeviruses are a globally distributed, diverse group of viruses that can be found from mosquitoes in a wide range of terrestrial biomes from tropical to boreal forests.


Subject(s)
Aedes/virology , Insect Viruses/classification , RNA Viruses/classification , Amino Acid Sequence , Animal Distribution , Animals , Cell Line , Finland , Genome, Viral , Insect Viruses/isolation & purification , Open Reading Frames , Phylogeny , RNA Viruses/isolation & purification , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics
17.
Vector Borne Zoonotic Dis ; 20(11): 843-849, 2020 11.
Article in English | MEDLINE | ID: mdl-32898458

ABSTRACT

Sindbis virus (SINV) is a mosquito-borne avian hosted virus that is widely distributed in Europe, Africa, Asia, and Oceania. Disease in humans is documented mainly from Northern Europe and South Africa and associated with genotype I. In 2018 under extremely warm climatic conditions, a small outbreak of 71 diagnosed SINV infections was recorded in Finland. We screened 52 mosquito pools (570 mosquitoes) and 223 human sera for SINV with real-time RT-PCR and the positive samples with virus isolation. One SINV strain was isolated from a pool (n = 13) of genus Ochlerotatus mosquitoes and three strains from patient serum samples. Complete genome analysis suggested all the isolates to be divergent from one another and related to previous Finnish, Swedish, and German strains. The study provides evidence of SINV strain transfer within Europe across regions with different epidemiological characteristics. Whether these are influenced by different mosquito genera involved in the transmission remains to be studied.


Subject(s)
Alphavirus Infections/epidemiology , Alphavirus Infections/virology , Culicidae/virology , Sindbis Virus/isolation & purification , Alphavirus Infections/blood , Animals , Culicidae/classification , Disease Outbreaks , Finland/epidemiology , Humans , Mosquito Vectors/classification , Mosquito Vectors/virology , Phylogeny , RNA, Viral/genetics , Sindbis Virus/genetics
18.
Ticks Tick Borne Dis ; 11(5): 101457, 2020 09.
Article in English | MEDLINE | ID: mdl-32723626

ABSTRACT

The numbers of reported human tick-borne encephalitis (TBE) cases in Europe have increased in several endemic regions (including Finland) in recent decades, indicative of an increasing threat to public health. As such, it is important to identify the regions at risk and the most influential factors associated with TBE distributions, particularly in understudied regions. This study aimed to identify the risk areas of TBE transmission in two different datasets based on human TBE disease cases from 2007 to 2011 (n = 86) and 2012-2017 (n  = 244). We also examined which factors best explain the presence of human TBE cases. We used ensemble modelling to determine the relationship of TBE occurrence with environmental, ecological, and anthropogenic factors in Finland. Geospatial data including these variables were acquired from several open data sources and satellite and aerial imagery and, were processed in GIS software. Biomod2, an ensemble platform designed for species distribution modelling, was used to generate ensemble models in R. The proportion of built-up areas, field, forest, and snow-covered land in November, people working in the primary sector, human population density, mean precipitation in April and July, and densities of European hares, white-tailed deer, and raccoon dogs best estimated distribution of human TBE disease cases in the two datasets. Random forest and generalized boosted regression models performed with a very good to excellent predictive power (ROC = 0.89-0.96) in both time periods. Based on the predictive maps, high-risk areas for TBE transmission were located in the coastal regions in Southern and Western Finland (including the Åland Islands), several municipalities in Central and Eastern Finland, and coastal municipalities in Southern Lapland. To explore potential changes in TBE distributions in future climate, we used bioclimatic factors with current and future climate forecast data to reveal possible future hotspot areas. Based on the future forecasts, a slightly wider geographical extent of TBE risk was introduced in the Åland Islands and Southern, Western and Northern Finland, even though the risk itself was not increased. Our results are the first steps towards TBE-risk area mapping in current and future climate in Finland.


Subject(s)
Climate Change , Ecosystem , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Finland/epidemiology , Humans , Incidence
19.
PLoS Negl Trop Dis ; 14(3): e0008099, 2020 03.
Article in English | MEDLINE | ID: mdl-32126086

ABSTRACT

Dengue virus (DENV) has caused recent outbreaks in coastal cities of Kenya, but the epidemiological situation in other areas of Kenya is largely unknown. We investigated the role of DENV infection as a cause of acute febrile disease in non-epidemic settings in rural and urban study areas in Kenya. Altogether, 560 patients were sampled in 2016-2017 in rural Taita-Taveta County (n = 327) and urban slums of Kibera, Nairobi (n = 233). The samples were studied for DENV IgM, IgG, NS1 antigen and flaviviral RNA. IgG seroprevalence was found to be higher in Taita-Taveta (14%) than in Nairobi (3%). Five Taita-Taveta patients were positive for flaviviral RNA, all identified as DENV-2, cosmopolitan genotype. Local transmission in Taita-Taveta was suspected in a patient without travel history. The sequence analysis suggested that DENV-2 strains circulating in coastal and southern Kenya likely arose from a single introduction from India. The molecular clock analyses dated the most recent ancestor to the Kenyan strains a year before the large 2013 outbreak in Mombasa. After this, the virus has been detected in Kilifi in 2014, from our patients in Taita-Taveta in 2016, and in an outbreak in Malindi in 2017. The results highlight that silent transmission occurs between epidemics and also affects rural areas. More information is needed to understand the local epidemiological characteristics and future risks of dengue in Kenya.


Subject(s)
Dengue Virus/classification , Dengue Virus/isolation & purification , Dengue/epidemiology , Dengue/virology , Epidemics , Genotype , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antigens, Viral/blood , Child , Child, Preschool , Dengue/transmission , Dengue Virus/genetics , Disease Transmission, Infectious , Female , Humans , Kenya/epidemiology , Male , Middle Aged , Molecular Epidemiology , Prevalence , RNA, Viral/blood , Rural Population , Sequence Analysis, DNA , Urban Population , Young Adult
20.
Emerg Microbes Infect ; 8(1): 675-683, 2019.
Article in English | MEDLINE | ID: mdl-31084456

ABSTRACT

Number of tick-borne encephalitis (TBE) cases has increased and new foci have emerged in Finland during the last decade. We evaluated risk for locally acquired TBE in the capital region inhabited by 1.2 million people. We screened ticks and small mammals from probable places of TBE virus (TBEV) transmission and places without reported circulation. The TBEV positive samples were sequenced and subjected to phylogenetic analysis. Within the study period 2007-2017, there was a clear increase of both all TBE cases and locally acquired cases in the Helsinki area. The surveillance of ticks and small mammals for TBEV confirmed four distinct TBEV foci in the Helsinki area. All detected TBEV strains were of the European subtype. TBEV genome sequences indicated that distinct TBEV lineages circulate in each focus. Molecular clock analysis suggested that the virus lineages were introduced to these foci decades ago. In conclusion, TBE has emerged in the mainland of Helsinki area during the last decade, with at least four distinct virus lineages independently introduced into the region previously. Although the overall annual TBE incidence is below the threshold for recommending general vaccinations, the situation requires further surveillance to detect and prevent possible further emergence of local TBE clusters.


Subject(s)
Encephalitis Viruses, Tick-Borne/classification , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Genetic Variation , Mammals/virology , Ticks/virology , Animals , Disease Transmission, Infectious , Encephalitis Viruses, Tick-Borne/genetics , Finland/epidemiology , Genotype , Humans , Incidence , Molecular Epidemiology , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...