Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37607770

ABSTRACT

Cisplatin-based chemotherapy has been associated with durable disease control in a small subset of patients with metastatic urothelial cancer. However, the mechanistic basis for this phenomenon has remained elusive. Antitumor immunity may underlie these exceptional responders. In a phase II trial evaluating a phased schedule of gemcitabine and cisplatin followed by gemcitabine and cisplatin with ipilimumab for metastatic urothelial cancer, 4 of 36 patients achieved durable disease-free treatment-free survival (DDFTFS) and remain in remission over 5 years after enrolment on the study. We sought to identify the genomic and immunological mechanisms associated with functional cures of such patients. Whole exome sequencing was performed on pretreatment archival tumor tissue. Neoantigen prediction and ranking were performed using a novel pipeline. For a subset of patients with available biospecimens, selected peptides were tested for neoantigen-specific T cell reactivity in peripheral blood CD4+ and CD8+ T cells cultured with autologous antigen-presenting cells at baseline, postchemotherapy, and postchemotherapy and ipilimumab timepoints. Multiplex assays of serum protein analytes were also assessed at each time point. Serum proteomic analysis revealed that pretreatment, patients achieving DDFTFS demonstrated an immune activated phenotype with elevations in TH1 adaptive immunity, costimulatory molecules, and immune checkpoint markers. After combination cisplatin-based chemotherapy and ipilimumab treatment, DDFTFS patients again displayed enrichment for markers of adaptive immunity, as well as T cell cytotoxicity. CD27 was uniquely enriched in DDFTFS patients at all timepoints. Neoantigen reactivity was not detected in any patient at baseline or post two cycles of chemotherapy. Both CD4+ and CD8+ neoantigen-specific T cell reactivity was detected in two of two DDFTFS patients in comparison to zero of five non-DDFTFS patients after combination cisplatin-based chemotherapy and ipilimumab treatment. Antitumor immunity may underlie functional cures achieved in patients with metastatic urothelial cancer treated with cisplatin-based chemotherapy and immune checkpoint blockade. Probing the mechanistic basis for DDFTFS may facilitate the identification of biomarkers, therapeutic components, and optimal treatment sequences necessary to extend this ultimate goal to a larger subset of patients.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Transitional Cell , Humans , Cisplatin/therapeutic use , Ipilimumab/therapeutic use , Proteomics , Disease-Free Survival , Carcinoma, Transitional Cell/drug therapy
2.
Gut ; 72(1): 129-140, 2023 01.
Article in English | MEDLINE | ID: mdl-35197323

ABSTRACT

OBJECTIVE: We previously reported a characterisation of the hepatocellular carcinoma (HCC) immune contexture and described an immune-specific class. We now aim to further delineate the immunogenomic classification of HCC to incorporate features that explain responses/resistance to immunotherapy. DESIGN: We performed RNA and whole-exome sequencing, T-cell receptor (TCR)-sequencing, multiplex immunofluorescence and immunohistochemistry in a novel cohort of 240 HCC patients and validated our results in other cohorts comprising 660 patients. RESULTS: Our integrative analysis led to define: (1) the inflamed class of HCC (37%), which includes the previously reported immune subclass (22%) and a new immune-like subclass (15%) with high interferon signalling, cytolytic activity, expression of immune-effector cytokines and a more diverse T-cell repertoire. A 20-gene signature was able to capture ~90% of these tumours and is associated with response to immunotherapy. Proteins identified in liquid biopsies recapitulated the inflamed class with an area under the ROC curve (AUC) of 0.91; (2) The intermediate class, enriched in TP53 mutations (49% vs 29%, p=0.035), and chromosomal losses involving immune-related genes and; (3) the excluded class, enriched in CTNNB1 mutations (93% vs 27%, p<0.001) and PTK2 overexpression due to gene amplification and promoter hypomethylation. CTNNB1 mutations outside the excluded class led to weak activation of the Wnt-ßcatenin pathway or occurred in HCCs dominated by high interferon signalling and type I antigen presenting genes. CONCLUSION: We have characterised the immunogenomic contexture of HCC and defined inflamed and non-inflamed tumours. Two distinct CTNNB1 patterns associated with a differential role in immune evasion are described. These features may help predict immune response in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Wnt Signaling Pathway/genetics , DNA Methylation , Interferons , Mutation
3.
Clin Cancer Res ; 28(20): 4509-4520, 2022 10 14.
Article in English | MEDLINE | ID: mdl-35998012

ABSTRACT

PURPOSE: Mongolia has the world's highest incidence of hepatocellular carcinoma (HCC), with ∼100 cases/100,000 inhabitants, although the reasons for this have not been thoroughly delineated. EXPERIMENTAL DESIGN: We performed a molecular characterization of Mongolian (n = 192) compared with Western (n = 187) HCCs by RNA sequencing and whole-exome sequencing to unveil distinct genomic and transcriptomic features associated with environmental factors in this population. RESULTS: Mongolian patients were younger, with higher female prevalence, and with predominantly HBV-HDV coinfection etiology. Mongolian HCCs presented significantly higher rates of protein-coding mutations (121 vs. 70 mutations per tumor in Western), and in specific driver HCC genes (i.e., APOB and TSC2). Four mutational signatures characterized Mongolian samples, one of which was novel (SBS Mongolia) and present in 25% of Mongolian HCC cases. This signature showed a distinct substitution profile with a high proportion of T>G substitutions and was significantly associated with a signature of exposure to the environmental agent dimethyl sulfate (71%), a 2A carcinogenic associated with coal combustion. Transcriptomic-based analysis delineated three molecular clusters, two not present in Western HCC; one with a highly inflamed profile and the other significantly associated with younger female patients. CONCLUSIONS: Mongolian HCC has unique molecular traits with a high mutational burden and a novel mutational signature associated with genotoxic environmental factors present in this country.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Apolipoproteins B/genetics , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/genetics , Coal , Female , Humans , Liver Neoplasms/etiology , Liver Neoplasms/genetics , Mongolia/epidemiology , Mutation
4.
Oncologist ; 27(6): 432-e452, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35438782

ABSTRACT

BACKGROUND: Treatment options have been historically limited for cisplatin-ineligible patients with advanced urothelial carcinoma (UC). Given the need for alternatives to platinum-based chemotherapy, including non-chemotherapy regimens for patients with both impaired renal function and borderline functional status, in 2010 (prior to the immune checkpoint blockade era in metastatic UC), we initiated a phase II trial to test the activity of everolimus or everolimus plus paclitaxel in the cisplatin-ineligible setting. METHODS: This was an open-label phase II trial conducted within the US-based Hoosier Cancer Research Network (ClinicalTrials.gov number: NCT01215136). Patients who were cisplatin-ineligible with previously untreated advanced UC were enrolled. Patients with both impaired renal function and poor performance status were enrolled into cohort 1; patients with either were enrolled into cohort 2. Patients received everolimus 10 mg daily alone (cohort 1) or with paclitaxel 80 mg/m2 on days 1, 8, and 15 of each 28-day cycle (cohort 2). The primary outcome was clinical benefit at 4 months. Secondary outcomes were adverse events, progression-free survival (PFS), and 1-year overall survival (OS). Exploratory endpoints included genomic correlates of outcomes. The trial was not designed for comparison between cohorts. RESULTS: A total of 36 patients were enrolled from 2010 to 2018 (cohort 1, N = 7; cohort 2, N = 29); the trial was terminated due to slow accrual. Clinical benefit at 4 months was attained by 0 (0%, 95% confidence interval [CI] 0-41.0%) patients in cohort 1 and 11 patients (37.9%, 95% CI 20.7-57.7%) in cohort 2. Median PFS was 2.33 (95% CI 1.81-Inf) months in cohort 1 and 5.85 (95% CI 2.99-8.61) months in cohort 2. Treatment was discontinued due to adverse events for 2 patients (29%) in cohort 1 and 11 patients (38%) in cohort 2. Molecular alterations in microtubule associated genes may be associated with treatment benefit but this requires further testing. CONCLUSION: Everolimus plus paclitaxel demonstrates clinical activity in cisplatin-ineligible patients with metastatic UC, although the specific contribution of everolimus cannot be delineated. Patients with both impaired renal function and borderline functional status may be difficult to enroll to prospective trials. (ClinicalTrials.gov Identifier NCT01215136).


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carcinoma, Transitional Cell/drug therapy , Cisplatin , Everolimus/therapeutic use , Humans , Paclitaxel/therapeutic use , Prospective Studies , Treatment Outcome , Urinary Bladder Neoplasms/drug therapy
6.
J Endocr Soc ; 5(7): bvab087, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34159287

ABSTRACT

Ossifying fibromas are very rare tumors that are sometimes seen as part of the hyperparathyroidism-jaw tumor syndrome (HPT-JT), which is caused by inactivating mutations of the HRPT2/CDC73 tumor suppressor gene. CDC73 mutations have been identified in a subset of sporadic cases but aberrant expression of the encoded protein, parafibromin, has not been demonstrated in ossifying fibroma. We sought to determine if loss of parafibromin regularly contributes to the development of sporadic, nonsyndromic ossifying fibroma. We examined a series of 9 ossifying fibromas, including ossifying, cemento-ossifying, and juvenile active variants, for parafibromin protein expression by immunohistochemistry and for CDC73 sequence abnormalities by Sanger sequencing and/or targeted AmpliSeq panel sequencing. Four ossifying fibromas showed a complete absence of nuclear parafibromin expression; loss of parafibromin expression was coupled with aberrant cytoplasmic parafibromin expression in 1 case. CDC73 mutations were detected in 2 cases with aberrant parafibromin expression. These results provide novel evidence, at the level of protein expression, that loss of the parathyroid CDC73/parafibromin tumor suppressor may play a role in the pathogenesis of a subset of ossifying fibromas.

7.
J Hepatol ; 75(4): 865-878, 2021 10.
Article in English | MEDLINE | ID: mdl-33992698

ABSTRACT

BACKGROUND AND AIMS: Non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) is increasing globally, but its molecular features are not well defined. We aimed to identify unique molecular traits characterising NASH-HCC compared to other HCC aetiologies. METHODS: We collected 80 NASH-HCC and 125 NASH samples from 5 institutions. Expression array (n = 53 NASH-HCC; n = 74 NASH) and whole exome sequencing (n = 52 NASH-HCC) data were compared to HCCs of other aetiologies (n = 184). Three NASH-HCC mouse models were analysed by RNA-seq/expression-array (n = 20). Activin A receptor type 2A (ACVR2A) was silenced in HCC cells and proliferation assessed by colorimetric and colony formation assays. RESULTS: Mutational profiling of NASH-HCC tumours revealed TERT promoter (56%), CTNNB1 (28%), TP53 (18%) and ACVR2A (10%) as the most frequently mutated genes. ACVR2A mutation rates were higher in NASH-HCC than in other HCC aetiologies (10% vs. 3%, p <0.05). In vitro, ACVR2A silencing prompted a significant increase in cell proliferation in HCC cells. We identified a novel mutational signature (MutSig-NASH-HCC) significantly associated with NASH-HCC (16% vs. 2% in viral/alcohol-HCC, p = 0.03). Tumour mutational burden was higher in non-cirrhotic than in cirrhotic NASH-HCCs (1.45 vs. 0.94 mutations/megabase; p <0.0017). Compared to other aetiologies of HCC, NASH-HCCs were enriched in bile and fatty acid signalling, oxidative stress and inflammation, and presented a higher fraction of Wnt/TGF-ß proliferation subclass tumours (42% vs. 26%, p = 0.01) and a lower prevalence of the CTNNB1 subclass. Compared to other aetiologies, NASH-HCC showed a significantly higher prevalence of an immunosuppressive cancer field. In 3 murine models of NASH-HCC, key features of human NASH-HCC were preserved. CONCLUSIONS: NASH-HCCs display unique molecular features including higher rates of ACVR2A mutations and the presence of a newly identified mutational signature. LAY SUMMARY: The prevalence of hepatocellular carcinoma (HCC) associated with non-alcoholic steatohepatitis (NASH) is increasing globally, but its molecular traits are not well characterised. In this study, we uncovered higher rates of ACVR2A mutations (10%) - a potential tumour suppressor - and the presence of a novel mutational signature that characterises NASH-related HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Molecular Biology/statistics & numerical data , Non-alcoholic Fatty Liver Disease/genetics , Aged , Aged, 80 and over , Carcinoma, Hepatocellular/etiology , Female , Humans , Liver Neoplasms/etiology , Liver Neoplasms/genetics , Male , Middle Aged , Molecular Biology/methods , Non-alcoholic Fatty Liver Disease/complications , Risk Factors
9.
iScience ; 24(3): 102212, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33733072

ABSTRACT

Adenoid cystic carcinoma (ACC) is a rare cancer type that originates in the salivary glands. Tumors commonly invade along nerve tracks in the head and neck, making surgery challenging. Follow-up treatments for recurrence or metastasis including chemotherapy and targeted therapies have shown limited efficacy, emphasizing the need for new therapies. Here, we report a Drosophila-based therapeutic approach for a patient with advanced ACC disease. A patient-specific Drosophila transgenic line was developed to model the five major variants associated with the patient's disease. Robotics-based screening identified a three-drug cocktail-vorinostat, pindolol, tofacitinib-that rescued transgene-mediated lethality in the Drosophila patient-specific line. Patient treatment led to a sustained stabilization and a partial metabolic response of 12 months. Subsequent resistance was associated with new genomic amplifications and deletions. Given the lack of options for patients with ACC, our data suggest that this approach may prove useful for identifying novel therapeutic candidates.

10.
J Clin Endocrinol Metab ; 106(3): 826-842, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33221858

ABSTRACT

CONTEXT: Pituitary corticotroph adenomas are rare tumors that can be associated with excess adrenocorticotropin (ACTH) and adrenal cortisol production, resulting in the clinically debilitating endocrine condition Cushing disease. A subset of corticotroph tumors behave aggressively, and genomic drivers behind the development of these tumors are largely unknown. OBJECTIVE: To investigate genomic drivers of corticotroph tumors at risk for aggressive behavior. DESIGN: Whole-exome sequencing of patient-matched corticotroph tumor and normal deoxyribonucleic acid (DNA) from a patient cohort enriched for tumors at risk for aggressive behavior. SETTING: Tertiary care center. PATIENTS: Twenty-seven corticotroph tumors from 22 patients were analyzed. Twelve tumors were macroadenomas, of which 6 were silent ACTH tumors, 2 were Crooke's cell tumors, and 1 was a corticotroph carcinoma. INTERVENTION: Whole-exome sequencing. MAIN OUTCOME MEASURE: Somatic mutation genomic biomarkers. RESULTS: We found recurrent somatic mutations in USP8 and TP53 genes, both with higher allelic fractions than other somatic mutations. These mutations were mutually exclusive, with TP53 mutations occurring only in USP8 wildtype (WT) tumors, indicating they may be independent driver genes. USP8-WT tumors were characterized by extensive somatic copy number variation compared with USP8-mutated tumors. Independent of molecular driver status, we found an association between invasiveness, macroadenomas, and aneuploidy. CONCLUSIONS: Our data suggest that corticotroph tumors may be categorized into a USP8-mutated, genome-stable subtype versus a USP8-WT, genome-disrupted subtype, the latter of which has a TP53-mutated subtype with high level of chromosome instability. These findings could help identify high risk corticotroph tumors, namely those with widespread CNV, that may need closer monitoring and more aggressive treatment.


Subject(s)
ACTH-Secreting Pituitary Adenoma/genetics , Adenoma/genetics , DNA Copy Number Variations , Endopeptidases/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Tumor Suppressor Protein p53/genetics , Ubiquitin Thiolesterase/genetics , ACTH-Secreting Pituitary Adenoma/epidemiology , ACTH-Secreting Pituitary Adenoma/pathology , Adenoma/epidemiology , Adenoma/pathology , Adolescent , Adult , Case-Control Studies , Cell Transformation, Neoplastic/genetics , Cohort Studies , DNA Copy Number Variations/physiology , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Mutation , Neoplasm Invasiveness , Neoplasm Metastasis , Exome Sequencing , Young Adult
11.
Nat Commun ; 11(1): 5210, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060578

ABSTRACT

Human insulinomas are rare, benign, slowly proliferating, insulin-producing beta cell tumors that provide a molecular "recipe" or "roadmap" for pathways that control human beta cell regeneration. An earlier study revealed abnormal methylation in the imprinted p15.5-p15.4 region of chromosome 11, known to be abnormally methylated in another disorder of expanded beta cell mass and function: the focal variant of congenital hyperinsulinism. Here, we compare deep DNA methylome sequencing on 19 human insulinomas, and five sets of normal beta cells. We find a remarkably consistent, abnormal methylation pattern in insulinomas. The findings suggest that abnormal insulin (INS) promoter methylation and altered transcription factor expression create alternative drivers of INS expression, replacing canonical PDX1-driven beta cell specification with a pathological, looping, distal enhancer-based form of transcriptional regulation. Finally, NFaT transcription factors, rather than the canonical PDX1 enhancer complex, are predicted to drive INS transactivation.


Subject(s)
Gene Expression Regulation, Neoplastic , Insulin/genetics , Insulin/metabolism , Insulinoma/genetics , Insulinoma/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Adult , Aged , Binding Sites , Computational Biology , DNA Methylation , Female , Homeodomain Proteins/metabolism , Humans , Insulin-Secreting Cells/metabolism , Male , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Middle Aged , Promoter Regions, Genetic , Trans-Activators/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Young Adult
12.
Sci Adv ; 5(5): eaav6528, 2019 05.
Article in English | MEDLINE | ID: mdl-31131321

ABSTRACT

Colorectal cancer remains a leading source of cancer mortality worldwide. Initial response is often followed by emergent resistance that is poorly responsive to targeted therapies, reflecting currently undruggable cancer drivers such as KRAS and overall genomic complexity. Here, we report a novel approach to developing a personalized therapy for a patient with treatment-resistant metastatic KRAS-mutant colorectal cancer. An extensive genomic analysis of the tumor's genomic landscape identified nine key drivers. A transgenic model that altered orthologs of these nine genes in the Drosophila hindgut was developed; a robotics-based screen using this platform identified trametinib plus zoledronate as a candidate treatment combination. Treating the patient led to a significant response: Target and nontarget lesions displayed a strong partial response and remained stable for 11 months. By addressing a disease's genomic complexity, this personalized approach may provide an alternative treatment option for recalcitrant disease such as KRAS-mutant colorectal cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Genes, ras , Pyridones/administration & dosage , Pyrimidinones/administration & dosage , Zoledronic Acid/administration & dosage , Animals , Colorectal Neoplasms/pathology , Disease Progression , Drosophila/genetics , Drug Administration Schedule , Drug Screening Assays, Antitumor , Female , Genomics , Humans , Male , Middle Aged , Mutation , Neoplasm Metastasis , Precision Medicine
13.
Transl Psychiatry ; 9(1): 21, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30655504

ABSTRACT

The genetic architecture of schizophrenia (SCZ) includes numerous risk loci across a range of frequencies and sizes, including common and rare single-nucleotide variants and insertions/deletions (indels), as well as rare copy number variants (CNVs). Despite the clear heritability of the disease, monozygotic twins are discordant for SCZ at a significant rate. Somatic variants-genetic changes that arise after fertilization rather than through germline inheritance-are widespread in the human brain and known to contribute to risk for both rare and common neuropsychiatric conditions. The contribution of somatic variants in the brain to risk of SCZ remains to be determined. In this study, we surveyed somatic single-nucleotide variants (sSNVs) in the brains of controls and individuals with SCZ (n = 10 and n = 9, respectively). From each individual, whole-exome sequencing (WES) was performed on DNA from neuronal and non-neuronal nuclei isolated by fluorescence activated nuclear sorting (FANS) from frozen postmortem prefrontal cortex (PFC) samples, as well as DNA extracted from temporal muscle as a reference. We identified an increased burden of sSNVs in cases compared to controls (SCZ rate = 2.78, control rate = 0.70; P = 0.0092, linear mixed effects model), that included a higher rate of non-synonymous and loss-of-function variants (SCZ rate = 1.33, control rate = 0.50; P = 0.047, linear mixed effects model). Our findings suggest sSNVs in the brain may constitute an additional component of the complex genetic architecture of SCZ. This perspective argues for the need to further investigate somatic variation in the brain as an explanation of the discordance in monozygotic twins and a potential guide to the identification of novel therapeutic targets.


Subject(s)
Brain/pathology , Polymorphism, Single Nucleotide , Schizophrenia/genetics , Case-Control Studies , DNA Copy Number Variations , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Schizophrenia/pathology , Twins, Monozygotic/genetics , Exome Sequencing
14.
Nucleic Acids Res ; 46(11): 5678-5691, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29771354

ABSTRACT

Archaeal homologs of eukaryotic C/D box small nucleolar RNAs (C/D box sRNAs) guide precise 2'-O-methyl modification of ribosomal and transfer RNAs. Although C/D box sRNA genes constitute one of the largest RNA gene families in archaeal thermophiles, most genomes have incomplete sRNA gene annotation because reliable, fully automated detection methods are not available. We expanded and curated a comprehensive gene set across six species of the crenarchaeal genus Pyrobaculum, particularly rich in C/D box sRNA genes. Using high-throughput small RNA sequencing, specialized computational searches and comparative genomics, we analyzed 526 Pyrobaculum C/D box sRNAs, organizing them into 110 families based on synteny and conservation of guide sequences which determine methylation targets. We examined gene duplications and rearrangements, including one family that has expanded in a pattern similar to retrotransposed repetitive elements in eukaryotes. New training data and inclusion of kink-turn secondary structural features enabled creation of an improved search model. Our analyses provide the most comprehensive, dynamic view of C/D box sRNA evolutionary history within a genus, in terms of modification function, feature plasticity, and gene mobility.


Subject(s)
Evolution, Molecular , Pyrobaculum/genetics , RNA, Archaeal/genetics , RNA, Small Nucleolar/genetics , Archaeal Proteins/genetics , Base Pair Mismatch , Genes, Duplicate , Genomics , Methylation , Multigene Family , RNA, Archaeal/chemistry , RNA, Archaeal/classification , RNA, Archaeal/metabolism , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/chemistry , RNA, Small Nucleolar/classification , RNA, Small Nucleolar/metabolism , RNA, Transfer/metabolism , RNA, Untranslated/genetics , Sequence Alignment
15.
Eur Urol ; 73(5): 751-759, 2018 05.
Article in English | MEDLINE | ID: mdl-29248319

ABSTRACT

BACKGROUND: Chemotherapy may exert immunomodulatory effects, thereby combining favorably with the immune checkpoint blockade. The pharmacodynamic effects of such combinations, and potential predictive biomarkers, remain unexplored. OBJECTIVE: To determine the safety, efficacy, and immunomodulatory effects of gemcitabine and cisplatin (GC) plus ipilimumab and explore the impact of somatic DNA damage response gene alterations on antitumor activity. DESIGN, SETTING, AND PARTICIPANTS: Multicenter single arm phase 2 study enrolling 36 chemotherapy-naïve patients with metastatic urothelial cancer. Peripheral blood flow cytometry was performed serially on all patients and whole exome sequencing of archival tumor tissue was performed on 28/36 patients. INTERVENTION: Two cycles of GC followed by four cycles of GC plus ipilimumab. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary endpoint was 1-yr overall survival (OS). Secondary endpoints included safety, objective response rate, and progression-free survival. RESULTS AND LIMITATIONS: Grade ≥3 adverse events occurred in 81% of patients, the majority of which were hematologic. The objective response rate was 69% and 1-yr OS was 61% (lower bound 90% confidence interval: 51%). On exploratory analysis, there were no significant changes in the composition and frequency of circulating immune cells after GC alone. However, there was a significant expansion of circulating CD4 cells with the addition of ipilimumab which correlated with improved survival. The response rate was significantly higher in patients with deleterious somatic DNA damage response mutations (sensitivity=47.6%, specificity=100%, positive predictive value=100%, and negative predictive value=38.9%). Limitations are related to the sample size and single-arm design. CONCLUSIONS: GC+ipilimumab did not achieve the primary endpoint of a lower bound of the 90% confidence interval for 1-yr OS of >60%. However, within the context of a small single-arm trial, the results may inform current approaches combining chemotherapy plus immunotherapy from the standpoint of feasibility, appropriate cytotoxic backbones, and potential predictive biomarkers. TRIAL REGISTRATION: ClinicalTrials.gov NCT01524991. PATIENT SUMMARY: Combining chemotherapy and immune checkpoint blockade in patients with metastatic urothelial cancer is feasible. Further studies are needed to refine optimal combinations and evaluate tests that might identify patients most likely to benefit.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/genetics , Mutation/genetics , Urologic Neoplasms/drug therapy , Urologic Neoplasms/genetics , Aged , Aged, 80 and over , Carcinoma, Transitional Cell/mortality , Carcinoma, Transitional Cell/pathology , Cisplatin/administration & dosage , DNA Damage/drug effects , DNA Mutational Analysis , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Disease-Free Survival , Female , Humans , Ipilimumab/administration & dosage , Kaplan-Meier Estimate , Male , Middle Aged , Molecular Targeted Therapy/methods , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Neoplasm Staging , Prognosis , Prospective Studies , Risk Assessment , Survival Analysis , Treatment Outcome , Urologic Neoplasms/mortality , Urologic Neoplasms/pathology , Gemcitabine
16.
Nat Commun ; 8(1): 767, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28974674

ABSTRACT

Although diabetes results in part from a deficiency of normal pancreatic beta cells, inducing human beta cells to regenerate is difficult. Reasoning that insulinomas hold the "genomic recipe" for beta cell expansion, we surveyed 38 human insulinomas to obtain insights into therapeutic pathways for beta cell regeneration. An integrative analysis of whole-exome and RNA-sequencing data was employed to extensively characterize the genomic and molecular landscape of insulinomas relative to normal beta cells. Here, we show at the pathway level that the majority of the insulinomas display mutations, copy number variants and/or dysregulation of epigenetic modifying genes, most prominently in the polycomb and trithorax families. Importantly, these processes are coupled to co-expression network modules associated with cell proliferation, revealing candidates for inducing beta cell regeneration. Validation of key computational predictions supports the concept that understanding the molecular complexity of insulinoma may be a valuable approach to diabetes drug discovery.Diabetes results in part from a deficiency of functional pancreatic beta cells. Here, the authors study the genomic and epigenetic landscapes of human insulinomas to gain insight into possible pathways for therapeutic beta cell regeneration, highlighting epigenetic genes and pathways.


Subject(s)
Cell Proliferation/genetics , Diabetes Mellitus, Type 1/therapy , Insulin-Secreting Cells/metabolism , Insulinoma/genetics , Pancreatic Neoplasms/genetics , Regeneration/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Diabetes Mellitus, Type 1/metabolism , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Insulinoma/metabolism , Male , Middle Aged , Pancreatic Neoplasms/metabolism
17.
Cold Spring Harb Mol Case Stud ; 3(3): a001602, 2017 05.
Article in English | MEDLINE | ID: mdl-28487882

ABSTRACT

Cushing's disease (CD) is caused by pituitary corticotroph adenomas that secrete excess adrenocorticotropic hormone (ACTH). In these tumors, somatic mutations in the gene USP8 have been identified as recurrent and pathogenic and are the sole known molecular driver for CD. Although other somatic mutations were reported in these studies, their contribution to the pathogenesis of CD remains unexplored. No molecular drivers have been established for a large proportion of CD cases and tumor heterogeneity has not yet been investigated using genomics methods. Also, even in USP8-mutant tumors, a possibility may exist of additional contributing mutations, following a paradigm from other neoplasm types where multiple somatic alterations contribute to neoplastic transformation. The current study utilizes whole-exome discovery sequencing on the Illumina platform, followed by targeted amplicon-validation sequencing on the Pacific Biosciences platform, to interrogate the somatic mutation landscape in a corticotroph adenoma resected from a CD patient. In this USP8-mutated tumor, we identified an interesting somatic mutation in the gene RASD1, which is a component of the corticotropin-releasing hormone receptor signaling system. This finding may provide insight into a novel mechanism involving loss of feedback control to the corticotropin-releasing hormone receptor and subsequent deregulation of ACTH production in corticotroph tumors.


Subject(s)
ACTH-Secreting Pituitary Adenoma/genetics , ras Proteins/genetics , Adenoma/genetics , Adrenocorticotropic Hormone/genetics , Adult , Corticotrophs/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Female , Humans , Mutation , Pituitary ACTH Hypersecretion/genetics , Pituitary Neoplasms/genetics , Receptors, Corticotropin-Releasing Hormone/genetics , Sequence Analysis, DNA , Ubiquitin Thiolesterase/genetics
18.
JCI Insight ; 2(6): e92061, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28352668

ABSTRACT

Parathyroid carcinoma (PC) is an extremely rare malignancy lacking effective therapeutic intervention. We generated and analyzed whole-exome sequencing data from 17 patients to identify somatic and germline genetic alterations. A panel of selected genes was sequenced in a 7-tumor expansion cohort. We show that 47% (8 of 17) of the tumors harbor somatic mutations in the CDC73 tumor suppressor, with germline inactivating variants in 4 of the 8 patients. The PI3K/AKT/mTOR pathway was altered in 21% of the 24 cases, revealing a major oncogenic pathway in PC. We observed CCND1 amplification in 29% of the 17 patients, and a previously unreported recurrent mutation in putative kinase ADCK1. We identified the first sporadic PCs with somatic mutations in the Wnt canonical pathway, complementing previously described epigenetic mechanisms mediating Wnt activation. This is the largest genomic sequencing study of PC, and represents major progress toward a full molecular characterization of this rare malignancy to inform improved and individualized treatments.


Subject(s)
Gene Expression Profiling , Mutation , Parathyroid Neoplasms/genetics , Cohort Studies , Cyclin D1/metabolism , Humans , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/genetics , Wnt Signaling Pathway
19.
Sci Rep ; 7: 39487, 2017 01 04.
Article in English | MEDLINE | ID: mdl-28051114

ABSTRACT

Chronic allograft damage, defined by interstitial fibrosis and tubular atrophy (IF/TA), is a leading cause of allograft failure. Few effective therapeutic options are available to prevent the progression of IF/TA. We applied a meta-analysis approach on IF/TA molecular datasets in Gene Expression Omnibus to identify a robust 85-gene signature, which was used for computational drug repurposing analysis. Among the top ranked compounds predicted to be therapeutic for IF/TA were azathioprine, a drug to prevent acute rejection in renal transplantation, and kaempferol and esculetin, two drugs not previously described to have efficacy for IF/TA. We experimentally validated the anti-fibrosis effects of kaempferol and esculetin using renal tubular cells in vitro and in vivo in a mouse Unilateral Ureteric Obstruction (UUO) model. Kaempferol significantly attenuated TGF-ß1-mediated profibrotic pathways in vitro and in vivo, while esculetin significantly inhibited Wnt/ß-catenin pathway in vitro and in vivo. Histology confirmed significantly abrogated fibrosis by kaempferol and esculetin in vivo. We developed an integrative computational framework to identify kaempferol and esculetin as putatively novel therapies for IF/TA and provided experimental evidence for their therapeutic activities in vitro and in vivo using preclinical models. The findings suggest that both drugs might serve as therapeutic options for IF/TA.


Subject(s)
Allografts/pathology , Kaempferols/administration & dosage , Kidney Transplantation/adverse effects , Kidney/drug effects , Kidney/pathology , Umbelliferones/administration & dosage , Animals , Cell Line , Computational Biology , Disease Models, Animal , Drug Discovery/methods , Fibrosis , Graft Rejection/drug therapy , Humans , Informatics , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/surgery , Male , Mice, Inbred BALB C , Signal Transduction/drug effects
20.
Clin Cancer Res ; 23(6): 1552-1563, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27649553

ABSTRACT

Purpose: The high fatality-to-case ratio of ovarian cancer is directly related to platinum resistance. Exportin-1 (XPO1) is a nuclear exporter that mediates nuclear export of multiple tumor suppressors. We investigated possible clinicopathologic correlations of XPO1 expression levels and evaluated the efficacy of XPO1 inhibition as a therapeutic strategy in platinum-sensitive and -resistant ovarian cancer.Experimental Design: XPO1 expression levels were analyzed to define clinicopathologic correlates using both TCGA/GEO datasets and tissue microarrays (TMA). The effect of XPO1 inhibition, using the small-molecule inhibitors KPT-185 and KPT-330 (selinexor) alone or in combination with a platinum agent on cell viability, apoptosis, and the transcriptome was tested in immortalized and patient-derived ovarian cancer cell lines (PDCL) and platinum-resistant mice (PDX). Seven patients with late-stage, recurrent, and heavily pretreated ovarian cancer were treated with an oral XPO1 inhibitor.Results: XPO1 RNA overexpression and protein nuclear localization were correlated with decreased survival and platinum resistance in ovarian cancer. Targeted XPO1 inhibition decreased cell viability and synergistically restored platinum sensitivity in both immortalized ovarian cancer cells and PDCL. The XPO1 inhibitor-mediated apoptosis occurred through both p53-dependent and p53-independent signaling pathways. Selinexor treatment, alone and in combination with platinum, markedly decreased tumor growth and prolonged survival in platinum-resistant PDX and mice. In selinexor-treated patients, tumor growth was halted in 3 of 5 patients, including one with a partial response, and was safely tolerated by all.Conclusions: Taken together, these results provide evidence that XPO1 inhibition represents a new therapeutic strategy for overcoming platinum resistance in women with ovarian cancer. Clin Cancer Res; 23(6); 1552-63. ©2016 AACR.


Subject(s)
Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Karyopherins/genetics , Ovarian Neoplasms/drug therapy , Receptors, Cytoplasmic and Nuclear/genetics , Acrylates/administration & dosage , Active Transport, Cell Nucleus/genetics , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Hydrazines/administration & dosage , Karyopherins/antagonists & inhibitors , Mice , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Platinum/administration & dosage , Platinum/adverse effects , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Triazoles/administration & dosage , Xenograft Model Antitumor Assays , Exportin 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...