Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 18(6): e1010261, 2022 06.
Article in English | MEDLINE | ID: mdl-35714152

ABSTRACT

Genome wide association studies (GWAS) have identified thousands of single nucleotide polymorphisms (SNPs) associated with the risk of common disorders. However, since the large majority of these risk SNPs reside outside gene-coding regions, GWAS generally provide no information about causal mechanisms regarding the specific gene(s) that are affected or the tissue(s) in which these candidate gene(s) exert their effect. The 'gold standard' method for understanding causal genes and their mechanisms of action are laborious basic science studies often involving sophisticated knockin or knockout mouse lines, however, these types of studies are impractical as a high-throughput means to understand the many risk variants that cause complex diseases like coronary artery disease (CAD). As a solution, we developed a streamlined, data-driven informatics pipeline to gain mechanistic insights on complex genetic loci. The pipeline begins by understanding the SNPs in a given locus in terms of their relative location and linkage disequilibrium relationships, and then identifies nearby expression quantitative trait loci (eQTLs) to determine their relative independence and the likely tissues that mediate their disease-causal effects. The pipeline then seeks to understand associations with other disease-relevant genes, disease sub-phenotypes, potential causality (Mendelian randomization), and the regulatory and functional involvement of these genes in gene regulatory co-expression networks (GRNs). Here, we applied this pipeline to understand a cluster of SNPs associated with CAD within and immediately adjacent to the gene encoding HDAC9. Our pipeline demonstrated, and validated, that this locus is causal for CAD by modulation of TWIST1 expression levels in the arterial wall, and by also governing a GRN related to metabolic function in skeletal muscle. Our results reconciled numerous prior studies, and also provided clear evidence that this locus does not govern HDAC9 expression, structure or function. This pipeline should be considered as a powerful and efficient way to understand GWAS risk loci in a manner that better reflects the highly complex nature of genetic risk associated with common disorders.


Subject(s)
Coronary Artery Disease , Genome-Wide Association Study , Twist-Related Protein 1/metabolism , Animals , Coronary Artery Disease/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Histone Deacetylases/metabolism , Linkage Disequilibrium , Mice , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Repressor Proteins/metabolism
2.
J Clin Invest ; 131(15)2021 08 02.
Article in English | MEDLINE | ID: mdl-34338228

ABSTRACT

Endothelial-mesenchymal transition (EndMT) is associated with various cardiovascular diseases and in particular with atherosclerosis and plaque instability. However, the molecular pathways that govern EndMT are poorly defined. Specifically, the role of epigenetic factors and histone deacetylases (HDACs) in controlling EndMT and the atherosclerotic plaque phenotype remains unclear. Here, we identified histone deacetylation, specifically that mediated by HDAC9 (a class IIa HDAC), as playing an important role in both EndMT and atherosclerosis. Using in vitro models, we found class IIa HDAC inhibition sustained the expression of endothelial proteins and mitigated the increase in mesenchymal proteins, effectively blocking EndMT. Similarly, ex vivo genetic knockout of Hdac9 in endothelial cells prevented EndMT and preserved a more endothelial-like phenotype. In vivo, atherosclerosis-prone mice with endothelial-specific Hdac9 knockout showed reduced EndMT and significantly reduced plaque area. Furthermore, these mice displayed a more favorable plaque phenotype, with reduced plaque lipid content and increased fibrous cap thickness. Together, these findings indicate that HDAC9 contributes to vascular pathology by promoting EndMT. Our study provides evidence for a pathological link among EndMT, HDAC9, and atherosclerosis and suggests that targeting of HDAC9 may be beneficial for plaque stabilization or slowing the progression of atherosclerotic disease.


Subject(s)
Atherosclerosis/enzymology , Endothelium/enzymology , Histone Deacetylases/metabolism , Plaque, Atherosclerotic/enzymology , Repressor Proteins/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Endothelium/pathology , Histone Deacetylases/genetics , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Knockout, ApoE , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...